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Abstract—Software lifecycles are becoming an increasingly
important issue for computational science & engineering (CSE)
software. The process by which a piece of CSE software begins
life as a set of research requirements and then matures into
a trusted high-quality capability is both commonplace and
extremely challenging. Although an implicit lifecycle is obviously
being used in any effort, the challenges of this process–respecting
the competing needs of research vs. production–cannot be over-
stated.

Here we describe a proposal for a well-defined software life-
cycle process based on modern Lean/Agile software engineering
principles. What we propose is appropriate for many CSE
software projects that are initially heavily focused on research
but also are expected to eventually produce usable high-quality
capabilities. The model is related to TriBITS, a build, integration
and testing system, which serves as a strong foundation for this
lifecycle model, and aspects of this lifecycle model are ingrained
in the TriBITS system. Indeed this lifecycle process, if followed,
will enable large-scale sustainable integration of many complex
CSE software efforts across several institutions.

I. INTRODUCTION

Computational Science and Engineering (CSE) is experi-
encing a challenge in software lifecycle issues. Much software
in CSE begins development as research software but at some
point begins to be used in other software and it is desired (or
it is expected) to eventually achieve production-quality. There
is currently no sufficient software engineering lifecycle model
defined for these types of CSE software that has been shown
to be effective. A previous attempt to create a viable lifecycle
model for CSE can be seen in the Trilinos Lifecycle Model [1].
This Trilinos lifecycle model provides for transitions of CSE
software from research, to production, to maintenance (and
later death). Since then we have been learning more effective
techniques for software engineering. This present lifecycle
model reflects what has been learned.

The goals for defining a lifecycle model for CSE (as
managed by the TriBITS system for example) are many, but
the most important include:

• Allow Exploratory Research to Remain Productive: By
not requiring more practices than are necessary for do-
ing basic research in early phases, researchers maintain
maximum productivity.

• Enable Reproducible Research: By considering the min-
imal but critical software quality aspects needed for

producing credible research, algorithm researchers will
produce better research that will stand a better chance
of being published in quality journals that require repro-
ducible research.

• Improve Overall Development Productivity: By focusing
on the right SE practices at the right times, and the right
priorities for a given phase/maturity level, developers
can work more productively with as little overhead as
reasonably possible.

• Improve Production Software Quality: By focusing on
foundational issues first in early-phase development,
higher-quality software will be produced as other ele-
ments of software quality are added. The end result will
be production software with any required level of quality.

• Better Communicate Maturity Levels with Customers:
By clearly defining maturity levels and advertising them
well, customers and stakeholders will have the right
expectations about a given piece of software, which will
aid in their determination of which software to use or (at
least presently) avoid using.

What is needed is a new Lean/Agile-consistent lifecycle
model for research-driven CSE software that can provide a
smooth transition from research to production and provide the
needed level of quality for every lifecycle phase along the way.
It is also necessary to appropriately communicate the current
maturity level to customers and stakeholders.

Lean methods refer to methodologies taken from Lean
Product Development that have been adapted to software
development [2], and Agile methods was coined in the early
2000’s by a group of software developers in response to
rigid plan-driven methods. Agile methods focus on disciplined
iterative development, which is defined by a core set of values
and practices [3], [4], [5]. Some of these core practices include
continuous integration (CI), test-driven development (TDD),
(continuous) design improvement, collective code ownership,
and coding standards [3], [5].

In this document, we define a new lifecycle that will likely
become the standard for many projects that use the TriBITS
system (e.g. the Trilinos Project). While the practices and
processes described in this proposed lifecycle model have been
demonstrated recently in smaller software efforts (e.g. parts of
a few mostly newer Trilinos packages and related projects) by



the authors and some of their collaborators, this effort is an
attempt to better define the lifecycle model so it can be tested
on a larger scale across many projects and organizations.

The rest of this document is organized as follows. Section III
describes the current state of software engineering supported
by TriBITS. Section IV gives an overview of the new TriBITS
lifecycle model phases/levels and some short discussion and
motivation. The concept of self-sustaining software, which is
the foundation of the TriBITS lifecycle model, is defined in
Section V. The difference between and relationship of software
engineering maturity and software usefulness maturity is the
topic of Section VI. This is followed by a comparison of the
new TriBITS lifecycle model to a typical lifecycle model used
by a CSE project in Section VII. Since any lifecycle model that
does not acknowledge the current state of a project is never
going to be followed, a discussion for the grandfathering of
existing packages is presented in Section VIII. The TriBITS
lifecycle model is summarized and next steps are given in
Section IX.

II. COMMON IMPLICIT MODEL: A VALIDATION-CENTRIC
APPROACH

Many if not most CSE projects have no formal software
lifecycle model. At the same time, these projects perform the
activities required to develop software: elicit and analyze re-
quirements, design and implement software, test and maintain
the product. Therefore, although implicit, each project has
some kind of lifecycle model. In our experience, the most
common implicit CSE lifecycle model can be described as a
validation-centric approach (VCA).

Roughly speaking, validation is doing the right thing
(whereas verification is doing things right). Validation is
viewing the software product as a black box that is supposed
to provide a certain behavior and functionality. Validation
(i.e. acceptance testing) is not concerned about the internal
structure of the product.

VCA can be a very attractive approach when validation is
easy to perform. For example, testing the correct behavior and
efficiency of a nonlinear or linear algebraic equation solver is
very straightforward. If a solver returns a solution, it is easy
to compute the execution time and residual norm as part of
using the solver. Even if the solver does not behave as the
developer intended (verification), and may not be implemented
optimally, there is little risk of an undetected failure, and
performance degradations are easily detected. If an application
has several solvers to pick from, then even the impact of a
software regression in one solver is mitigated by being able
to switch to another.

When VCA works, it introduces very little overhead to the
software engineering process, especially since validation is an
essential part of product certification. In fact, if a software
product is being developed for a specific customer, validation
often occurs as part of the development process, since the
customer is using the product as it is being developed. Fur-
thermore, investment in product-specific unit and integration

Side Note: The Trilinos Project is an effort to facilitate
the design, development, integration and on-going
support of foundational libraries for computational
science and engineering applications. Trilinos is
comprised of more than 50 packages with a wide range
of capabilities including basic distributed memory linear
algebra, load balancing, discretization support, and wide
variety of nonlinear analysis methods and much more.
Trilinos packages have complex dependencies on each
other and create a challenging software development
environment. The primary programming language for
Trilinos is C++ and therefore C++ considerations
dominate Trilinos development.

tests is expensive and may seem unjustified if the software
product’s future is uncertain.

From the above discussion, it is clear why VCA may
seem attractive. However, despite this attraction, VCA is an
ineffective long-term approach for all but the most easily val-
idated software products. This becomes particularly apparent
as a product matures and refactorings are made to address
requirements such as feature requests and porting to new
platforms. Numerous studies indicate that maintenance can be
as much as 75% or more of the total cost of a successful soft-
ware product [6]. VCA is initially inexpensive, but ultimately
costs much more. Furthermore, in many cases it leads to
early abandonment of a product simply because refactoring it
becomes untenable. Some of the specific challenges associated
with VCA are:

1) Feature expansion beyond validated functionality: As a
software product becomes widely used, features are often
added that are not covered by validation testing. These
features are immediately used by some customer, but the
customer’s code is not added to the validation suite. Any
such code is at risk when performing refactoring.

2) Loss of validation capabilities: Although a customer
application may initially be used to validate a product,
relationships with that customer may change and the
validation process will break down.

3) Inability to confidently refactor: In general, without in-
ternal testing in the form of easily checked unit tests
and product-specific integrated testing, refactoring efforts
cannot proceed incrementally. Furthermore, running vali-
dation tests for incremental changes is often cumbersome
and time-consuming, reducing the efficiency of the refac-
toring process.

Although validation-centric models are commonly used in
CSE, more effective approaches are needed. This comes at
a cost: teams must have the resources, tools and training to
effectively develop sustainable software. In the remainder of
this paper we present approaches we have found effective.



III. CURRENT BASELINE STATE FOR TRIBITS PROJECTS

Before describing the new TriBITS lifecycle model it is
worthwhile to provide some background on the current state
of TriBITS-based software engineering and development prac-
tices (e.g. as used by Trilinos) in order to to set the foundation
on which this lifecycle model will be based. These practices
and policies are ingrained into a TriBITS development envi-
ronment and are taken for granted in this discussion of the
new TriBITS lifecycle process.

The short list of relevant core TriBITS software engineering
processes and practices are:

• Official separation of TriBITS project code into Primary
Stable (PS), Secondary Stable (SS), and Experimental
(EX) for testing purposes.

• Partitioning of software into different packages (and
subpackages) with carefully controlled and managed de-
pendencies between the pieces of software.

• Synchronous (pre-push) CI testing of PS tested code
using the Python tool checkin-test.py.

• Asynchronous (post-push) CI testing of PS and SS tested
code using package-based CTest driver posting results to
CDash1.

• Increasingly extensive automated nightly regression test-
ing and portability testing (on a growing list of platforms)
of PS and SS tested code posting results to CDash.

• Strong compiler warnings enabled with g++ flags
such as -ansi -pedantic -Wall -Wshadow
-Woverloaded-virtual.

• Strong policies on the maintenance of 100% clean PS and
SS builds and tests for all Nightly and CI builds.

The official segregation of (Primary and Secondary) Stable
tested code from Experimental code allows the development
team to define and enforce fairly rigorous policies on keeping
Stable code building and having all the tests of Stable features
run successfully. This is maintained through the synchronous
(pre-push) CI and asynchronous (post-poss) CI testing tools
and processes and strong peer pressure to keep PS and SS
code builds and tests 100% clean. However, with respect to
lifecycle, having 100% clean tests means very little if test
coverage is low (which is the case for many existing packages).
Technically speaking, Stable code with test coverage not near
100% at all times means the code is not meeting basic
Agile development standards (see [5] and [6]). Therefore, the
partitioning of software into PS, SS, and EX sets does not
directly address software quality issues.

IV. OVERVIEW OF THE TRIBITS SOFTWARE LIFECYCLE
MODEL

Here we propose a lifecycle model with four possible
phases or maturity levels (these can be thought of as either
phases or maturity levels depending on usage and frame
of reference). The concepts of self-sustaining software and

1CDash (www.cdash.org) is an open source, web-based software testing
server. CDash aggregates, analyzes and displays the results of software testing
processes submitted from clients located around the world.

Defined: PS, SS, and EX tested code:
PS (Primary Stable) tested code has minimal outside
dependencies and represents critical functionality such
that if broken would hamper core development efforts
for many developers.
SS (Secondary Stable) tested code has dependencies on
more than just the minimal set of TPLs (Third Party
Libraries) or is code that does not represent critical func-
tionality such that if broken would significantly hamper
the work of other developers. Most SS code is tested by
an asynchronous CI server for the primary development
platform after commits are pushed to the main develop-
ment repository. SS code is also tested nightly on many
platforms.
EX (Experimental) (non-)tested code is not PS or SS code
and not tested in any official testing process.

regulated backward compatibility, which are critical in the
definition and goals of these lifecycle phases, are described
in Section V and [7] (regulated backward compatibility is not
described in this paper due to lack of space), respectively.

The proposed lifecycle phases / maturity levels / classifica-
tions for the TriBITS Lifecycle Model are:

1) Exploratory (EP):
• Primary purpose is to explore alternative approaches

and prototypes, not to create software.
• Generally not developed consistent with Lean/Agile.
• Does not provide sufficient unit (or otherwise) testing

to demonstrate correctness.
• Often has a messy design and code base.
• Should not have even “friendly” customers.
• No one should use such code for anything important

(not even for research journals results, see below).
• Generally should not go out in open releases (but is

allowed by this lifecycle model).
• Does not provide a direct foundation for creating

production-quality code and should be put to the side or
thrown away when starting product development (see
[7] for a more in-depth discussion of the transition of
Exploratory code to Research Stable code).

2) Research Stable (RS):
• Developed from the very beginning in a Lean/Agile

consistent manner.
• Strong unit and verification tests (i.e. proof of cor-

rectness) are written as the code/algorithms are being
developed (near 100% line coverage). This does not
necessarily need to have a much higher initial cost (see
the idea of aggregate course-grained unit tests in [7])
but it may be big change for a typical programmer.

• Has a very clean design and code base maintained
through Agile practices of emergent design and con-
stant refactoring [8].

• Generally does not have higher-quality documentation,
user input checking and feedback, space/time perfor-



mance, portability, or acceptance testing.
• Would tend to provide for some regulated backward

compatibility but might not.
• Is appropriate to be used only by “expert” users.
• Is appropriate to be used only in “friendly” customer

codes.
• Generally should not go out in open releases (but is

allowed by this lifecycle model).
• Provides a strong foundation for creating production-

quality software and should be the first phase for
software that will likely become a product.

3) Production Growth (PG):
• Includes all the good qualities of Research Stable code.
• Provides increasingly improved checking of user input

errors and better error reporting.
• Has increasingly better formal documentation as well

as better examples and tutorial materials.
• Maintains clean structure through constant refactoring

of the code and user interfaces to make more consistent
and easier to maintain.

• Maintains increasingly better regulated backward com-
patibility with fewer incompatible changes with new
releases.

• Has increasingly better portability and space/time per-
formance characteristics.

• Has expanding usage in more customer codes.
4) Production Maintenance (PM):

• Includes the good qualities of Production Growth code.
• Primary development includes mostly bug fixes and

performance tweaks.
• Maintains rigorous backward compatibility with typ-

ically no deprecated features or breaks in backward
compatibility.

• Could be maintained by parts of the user community
if necessary (i.e. as “self-sustaining software”).

5) Unspecified Maturity (UM):
• Provides no official indication of maturity or quality.

Figure 1 shows how the different aspects of software quality
and maturity should progress over the phases from Research
Stable through Production Maintenance. What is shown is
that from the very beginning, Lean/Agile research software
has a high level of unit and verification testing and maintains
very a clean and simple design and code base that is only
improved over time. Fundamental testing and code clarity lie at
the foundation of self-sustaining software (Section V) and are
essential for the transition to eventual production quality. Ac-
ceptance testing requires end-user applications, so acceptance
testing naturally starts at a low level, then increases as more
users accept the software and add (automated) acceptance
tests. More formal application validation testing [9] would be
categorized as acceptance testing in this lifecycle model.

The more user-focused quality aspects of production soft-
ware, including documentation and tutorials, user input check-
ing and feedback, backwards compatibility, portability, and
space/time performance, are improved as needed by end users
and justified by various demands. The level of these user-
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Fig. 1. Typical levels of various production quality metrics in the different
phases of the proposed Lean/Agile-consistent TriBITS lifecycle model.

oriented aspects of quality can be in very different stages
of maturity yet the software can still be considered very
good Lean/Agile software. What differentiates Lean/Agile Re-
search software from Lean/Agile Production-quality software
is not the amount of testing and proof of correctness, but
rather the level of quality in these more user-focused areas.
However, when using basic Agile development practices (in-
cluding Emergent Design and Continuous Refactoring), even
“research” software will tend to have a clean internal structure
and have reasonably consistent user interfaces. The more user-
oriented aspects of production software will not be overlooked
as the software becomes a product because they are what users
most directly see. However, the core foundation of the software
that makes it self-sustaining, which includes fundamental
testing and code/design simplicity and clarity, is not directly
seen by users, and these critical aspects often get overlooked
as software is “hardened” toward production, resulting in non-
sustainable software. Therefore, the foundational elements of
strong testing and clean design and code must be established
at the beginning and maintained throughout the development
of the software, even from the first lines of research code.

What is important to grasp about this new TriBITS lifecycle
model is that steady progress is made in each of the areas (and
others) shown in Figure 1. There are no abrupt transitional
events that are required to move from one stage to the next.



When enough of the core production quality aspects are in
place, the development team can simply declare a package to
be in a higher (or lower) maturity level or stage. The level
of quality in any given area or set of areas needed to achieve
the next higher maturity level is somewhat subjective and will
need to be quantified or otherwise evaluated in some way when
implementing this lifecycle model in a particular project.

The Exploratory code phase mentioned above is for soft-
ware that is only used to quickly experiment with differ-
ent approaches. The Exploratory code phase really should
not exist in a Lean/Agile consistent lifecycle model, but is
needed as a catch-all for code that lacks the level of unit
and verification testing or level of design and code clarity
needed to be considered consistent with Lean/Agile software,
and therefore cannot be considered Research Stable code.
Such exploratory prototyping code should be discarded and
rewritten from scratch when entering the Research Stable
phase. Also, as mentioned above, Exploratory code should
likely not be used even in peer-reviewed journals that require
reproducible research. Code intended for publishing research
results should be written from the beginning as Lean/Agile
consistent Research Stable code.

The Unspecified Maturity code phase is used in cases where
the development team chooses to opt out of the TriBITS
lifecycle model.

Before describing other aspects of the TriBITS lifecycle
model in more detail, the important concept of self-sustaining
software is defined in the next section. Regulated backward
compatibility, another critical concept, is not discussed in this
paper due to lack of space, but is defined and discussed in
great detail in [7].

V. SELF-SUSTAINING OPEN-SOURCE SOFTWARE:
DEFINED

The CSE domain is complex and challenging for developing
and sustaining high-quality software. Many CSE projects have
development and usage lifetimes that span 10 to 30 years or
more. These projects have to port to many different platforms
over their lifetime as computing technology shifts, and the
software must be augmented and changed as new algorithms
are developed [10]. In such an environment, creating a strong
dependence on commercial tools and libraries can be a large
risk. Companies are purchased and product lines go away.
(For example, Intel purchased the KAI C++ compiler in the
late 1990’s and removed it from the market. It took years
before the Intel compilers reached the same level of quality
as the KAI C++ compiler in compiling and optimizing deeply
templated C++ code.) In addition, complex non-commercial
software produced in the U.S. national laboratories and univer-
sities, which require continuing development, maintenance and
support teams also represent a risk to long-lived CSE projects.
For example, what happens to customer projects that adopt
a complex SciDAC software library when the funding goes
away and removes the associated supporting SciDAC-funded
development and support team?

We advocate that CSE software (such as Trilinos and related
software packages) intended for use by other CSE projects
should be self-sustaining, so that customer project teams could
take over the basic maintenance and support of the software
for their own use, if needed.

We define Self-Sustaining Software to have the following
properties:

• Open-source: The software has a sufficiently loose open-
source license allowing the source code to be arbitrarily
modified and used and reused in a variety of contexts
(including unrestricted usage in commercial codes).

• Core domain distillation document: The software is ac-
companied with a short focused high-level document de-
scribing the purpose of the software and its core domain
model [11].

• Exceptionally well tested: The current functionality of
the software and its behavior is rigorously defined and
protected with strong automated unit and verification
tests.

• Clean structure and code: The internal code structure and
interfaces are clean and consistent.

• Minimal controlled internal and external dependencies:
The software has well structured internal dependencies
and minimal external upstream software dependencies
and those dependencies are carefully managed.

• Properties apply recursively to upstream software: All
of the external upstream software dependencies are also
themselves self-sustaining software.

• All properties are preserved under maintenance: All
maintenance of the software preserves all of these
properties of self-sustaining software (by applying Ag-
ile/Emergent Design, Continuous Refactoring, and other
good Lean/Agile software development practices).

The software must have a sufficiently free open-source
license so that customer projects can make needed changes
to the software, including critical porting work. Alternatively,
customers of non-open-source commercial software must rely
on the supplying vendor for porting and needed modifications,
which they might not be able to do for various reasons. What is
critical to a given project is not that upstream dependent soft-
ware is open-source to everyone but that it is open source to
their project. This can be provided through license agreements
and provide the same protection to the downstream project.

A high-level document defining the scope, high-level goals,
and core domain of the software is needed to maintain the
“conceptual integrity” of the software [12]. This document
will be short and focused and will define the high-level “Core
Domain Model” for the particular piece of CSE software [11].
A good example of a domain model for a multi-physics
coupling package is given in [13].

Strong unit and verification tests are at least as important as
a high-level domain-model document. Such tests are critical
for safe and efficient changes such as adding new features,
porting to new platforms, and generally refactoring of the code
as needed, without breaking behavior or destroying backward
compatibility (see [14]). Code with strong unit and verification



tests should have very few defects (in Agile, there are no
defects, only missing tests). The testing environment must be
an integral part of the development process from the very
beginning (preferably using Test-Drive Development (TDD)
[15]). Any software lifecycle model and process that does
not include strong unit and verification testing from the very
beginning of the project is not Lean/Agile consistent and,
practically speaking, cannot be used as the foundation for pro-
ducing trusted production-quality software. This is probably
the biggest weakness of the commonly used validation-centric
model described in Section II.

Maintaining a clean and simple internal structure of the code
is crucial for achieving self-sustaining software. No matter
how good the unit and verification tests are, if the code is
too convoluted or has too many entangling dependencies and
tricky behaviors, the software will not be able to be affordably
maintained, ported to new platforms, or changed for other pur-
poses. Preserving a clean internal structure while developing
software is most efficiently done using continuous refactoring
and redesign [5]. This process must be skillfully and rigorously
applied during maintenance and further development, or the
result will be the slow death of “software entropy”, making
the code unsustainable [12]. Developing software of this type
requires a high degree of skill and knowledge and places a very
high standard on CSE development teams which first create
and later expand and maintain the software.

A self-sustaining software package must also have carefully
managed dependencies within itself and with its upstream
software dependencies. Within the package, if it has too
many entangling dependencies and if any particular customer
does not need the majority of functionality provided by the
software, then the customer is at greater risk because they may
be forced to build (and possibly port) a lot of software they
don’t actually use. For example, a given downstream customer
may only fundamentally need a few classes but if the software
has entangling dependencies within itself, the customer may
be forced to port hundreds of thousands of lines of code just
to get functionality that should be contained in a few thousand
lines of code. Similar to entangling dependencies within a
given piece of software, the more external TPL upstream
software that is required to be downloaded, configured, and
built, the greater the risk. In extreme cases, the volume of
external software package installation required before building
the desired package can greatly complicate the installation
and porting of the software. However, the goal is not to have
zero dependencies. Therefore, self-sustaining software must
carefully manage internal and external dependencies.

Satisfying the basic properties of self-sustaining software is
not sufficient. It is also critical that the upstream dependencies
of self-sustaining software be self-sustaining. Therefore, the
definition of self-sustaining software is recursive in nature. For
example, suppose a piece of software is clear and well tested,
but has a critical dependency on a commercial numerical
library that is unique and not easy to replace. If the vendor
removes support for this critical commercial numerical library,
the downstream open-source software may become unusable

and non-portable to future platforms. (Note that depending on
standard ubiquitous interfaces like the C++ standard library
classes or MPI is not considered a risk and does not require
access to source code or self-sustaining software.)

Any software that does not maintain these properties as it is
ported and maintained will eventually become unsustainable,
which then becomes a liability to its various downstream
customer CSE software projects.

Note that self-sustaining software does not necessarily have
good user documentation, or any user-oriented examples, or
necessarily produce good error messages for invalid user
input. While these properties are important for the adoption
and usage of any piece of software, they do not affect the
sustainability of the software for existing client projects.

VI. SOFTWARE USEFULNESS MATURITY AND LIFECYCLE
PHASES

Now that we have defined the TriBITS Software Lifecycle
phases, it is important to note that maturity in a software
engineering sense is not necessarily correlated with maturity in
the usefulness of a software package. This applies to packages
in all of the TriBITS phases. Furthermore, as is clear from the
collection of useful CSE software, a package may be very
useful but not follow any prescribed software lifecycle and
have minimal testing coverage (making the code very fragile
under refactoring activities).

Even so, practically speaking, the usefulness of a software
package is typically the driving force behind moving it from
one phase to another in the TriBITS Lifecycle, and provides
the incentive for investing in software engineering activities to
preserve the package’s future usefulness. Furthermore, funding
for a software product is often directly connected to its
perceived usefulness. Therefore, any package that is in the
Production Growth or Production Maintenance phase will
almost surely be very mature in its usefulness.

Unfortunately, the opposite is not necessarily true. A pack-
age that is very mature in its usefulness is not necessarily
mature in a software engineering sense. In fact, paradoxically,
unless a software development team has carefully managed
the engineering of a useful software package, there is a
good chance that the package has, or will eventually, become
practically unchangeable. In this situation, the software has
matured and is very useful, but has outgrown its testing
coverage, has very complicated internal logic and has rigid
interface constraints (because it is extremely valuable to its
user base and change management has not been engineered
into the package). In this scenario the package development
team has a difficult choice to make: It must either address
the deficiencies in the mature package or start a new package,
which are both very expensive. The former choice is expensive
because it disrupts the activities of the existing user base and is
intrinsically distasteful and difficult for developers. The latter
choice is expensive because usefulness maturity happens over
a long period of time and requires extensive interaction with
the user base.
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Fig. 2. Example of the more typical variability in key quality metrics in a
typical CSE software development process.

VII. COMPARISON TO A TYPICAL CSE LIFECYCLE
MODEL

A more typical non-Lean/Agile software development pro-
cess used to develop CSE software (as determined by personal
experience and a number of studies and also consistent with
the VCA) would suggest that its quality metrics are like those
shown in Figure 2, where unit and verification testing and
code/design clarity are low and only get worse under mainte-
nance. The reduction in unit testing typically occurs because
as the software grows without maintaining a good architecture,
the entangling dependencies make it more difficult to get
objects into a test harness and the developers invariably fall
back on system level acceptance (or regression) tests. At the
same time, as the software is modified as new functionality
is added without being refactored, the software becomes more
convoluted and fragile and eventually dies the slow death of
software entropy [12].

Note that the timelines for user-oriented metrics, includ-
ing documentation, acceptance testing, user input validation,
backward compatibility, portability, and performance, typically
look more similar to a Lean/Agile method as show in Figure 1.
This is because these user-oriented metrics are most directly
seen by customers and (with the exception of space/time
performance) often do not require significant refactorings or

code changes that require clean code or good testing.
Depending on software such as this represents a large risk

for downstream customer projects since this software is not
self-sufficient and is unsustainable by any but the originating
organization or team that created the software. The prevalence
of this type of software in the CSE community is a major
reason for the trepidation that many CSE groups have in taking
on external software dependencies. Most of this apprehension
is founded on real experiences of getting burned by bad
upstream CSE software. The TriBITS lifecycle model is an
attempt to reverse this trend (starting with Trilinos and then
for related TriBITS-based projects).

VIII. GRANDFATHERING OF EXISTING CODE AND
UNSPECIFIED MATURITY

At the time of this writing, many of the established long-
released CSE software products (e.g. Trilinos packages) don’t
meet the criteria for self-sustaining software for even Research
Stable code for one or more reasons (i.e. lack of tests, messy
code, troublesome external dependencies). However, some of
these established packages are highly useful (see Section VI).
Hardening has occurred through extensive use by customers
and bug fixes, and active development has ceased. For certain
common use-cases, these packages are well validated (see Sec-
tion II). This is a typical way in which testing and hardening is
performed in CSE and other domains but is inconsistent with
Lean/Agile and does not lead to self-sustaining software.

This code is useful and represents important capabilities,
so it needs to be maintained and improved. However, despite
its usefulness, such software must be considered “Legacy
Code” because it lacks sufficient unit and verification tests (as
per definition in [14]). Therefore, the current generation of
packages will be grandfathered into the new lifecycle model
as long as the package developers agree, going forward, to
make all further modifications to the code using high-quality
Lean/Agile consistent practices. The right way to maintain
these important packages going forward is to apply the Agile
Legacy Software Change Algorithm defined in [14] which
states that every change to legacy code be carried out as
follows:

1) Identify Change Points: Identify the code that needs to
change, isolate its change points and sensing points.

2) Break Dependencies: Use hyper-sensitive minimal editing
to break fundamental dependencies to allow the code
being changed to be inserted into a unit test harness.

3) Cover with Unit Tests: Write new unit tests to protect the
current functioning and behavior of the code that will be
changed.

4) Add New Functionality with TDD: Write new, initially
failing, unit tests to define the new desired behavior
(or to reproduce a suspected bug) and then change the
code incrementally to get the new unit tests to pass. All
the time, be rebuilding and rerunning all the affected
unit tests to make sure changes don’t break the existing
behavior of the code.



5) Refactor: Refactor the code that is now being adequately
tested in order to reduce complexity, improve comprehen-
sibility, remove duplication, and provide the foundation
for further likely changes.

The above algorithm can be succinctly described as “cover”,
“change”, and “refactor”.

Any existing package that will be further changed and main-
tained according to the above-defined Agile Legacy Change
algorithm can be classified as follows:

1) Grandfathered Research Stable Code
2) Grandfathered Production Growth Code
3) Grandfathered Production Maintenance Code
By applying the above Agile Legacy Code change algorithm

repeatedly in small chunks over a long period of time, even
the worst legacy software (i.e. no tests and messy code) can
slowly be turned into quality software that will become easier
to change. If grandfathered software is changed enough using
the Agile Legacy Change process, it may eventually achieve a
level of design and clarity and unit and verification testing that
it can legitimately be considered to be Lean/Agile consistent
software and the prefix “Grandfathered” can be dropped.

By applying the powerful incremental refactoring and test-
ing approaches described above, a piece of software that might
otherwise be considered hopeless may actually be relatively
inexpensively resurrected and refactored into the next genera-
tion of self-sustaining software. Here, the claim of “relatively
inexpensively” is compared to the total cost of writing new
software from scratch to replace the existing legacy software
which can be a huge cost; much more than most people think
(see the discussion of “green field” projects in [14] and the
Netscape 6.0 experience2).

When development teams do not agree to use the Agile
Legacy Change algorithm to modify their legacy packages,
those packages should be excluded from the lifecycle model
and categorized as Unspecified Maturity.

IX. SUMMARY AND NEXT STEPS

The CSE community needs to change the way research-
based CSE software is developed. Much of the current research
software is in a state where there is not enough confidence in
the validity of the results to even justify drawing conclusions
in scholarly publications (there are some examples of where
defective software gave wrong results and hurt the creation of
knowledge in the research community [16]). CSE development
teams should be using TDD and need to write some unit and
verification tests, even if the only purpose of the software is
to do research and publish results. We also need some type
of review of the software to provide the basis for publishing
results that come from the code (but the typical journal peer-
review process does not do this).

The next step for most software projects serious about
trying to adopt and adapt the TriBITS lifecycle model is
to define processes and standards in order to implement it
within the project. Projects already using the TriBITS build

2http://www.joelonsoftware.com/articles/fog0000000069.html

and test system will have the easiest time but other projects
can implement this lifecycle model without using the actual
TriBITS system. The first projects that will try to adopt the
TriBITS lifecycle model will be Trilinos and the DOE CASL
VERA project.

Finally, as mentioned in Section VIII, existing packages will
necessarily need to be “grandfathered in”. This newly defined
TriBITS lifecycle process will not magically get everyone who
develops software to do so in a Lean/Agile consistent way
(i.e. with high unit and verification testing right from the very
beginning with a clean code base). There is a large cultural
issue that will need to be addressed and this document is just
a step along the path to getting various CSE projects to where
they need to be with respect to software quality. The potential
benefit of building a large ecosystem of CSE software using
this type of lifecycle model is huge and could significantly
accelerate progress being made in CSE by allowing the best
software from the best experts in many complex disciplines to
be integrated together to solve the hardest problems in CSE.
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