
SANDIA REPORT

2010-2234

Unlimited Release

Printed Feburary 2011

Teuchos C++ Memory Management

Classes, Idioms, and Related Topics

The Complete Reference

Trilinos version 11.0

A Comprehensive Strategy for Safe and Efficient Memory Management

in C++ for High Performance Computing

Roscoe Bartlett

Prepared by

Sandia National Laboratories

Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,

a Lockheed Martin Company, for the United States Department of Energy’s

National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy

by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United

States Government. Neither the United States Government, nor any agency thereof, nor any

of their employees, nor any of their contractors, subcontractors, or their employees, make any

warranty, express or implied, or assume any legal liability or responsibility for the accuracy,

completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-

resent that its use would not infringe privately owned rights. Reference herein to any specific

commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,

does not necessarily constitute or imply its endorsement, recommendation, or favoring by the

United States Government, any agency thereof, or any of their contractors or subcontractors.

The views and opinions expressed herein do not necessarily state or reflect those of the United

States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best

available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy

Office of Scientific and Technical Information

P.O. Box 62

Oak Ridge, TN 37831

Telephone: (865) 576-8401

Facsimile: (865) 576-5728

E-Mail: reports@adonis.osti.gov

Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce

National Technical Information Service

5285 Port Royal Rd

Springfield, VA 22161

Telephone: (800) 553-6847

Facsimile: (703) 605-6900

E-Mail: orders@ntis.fedworld.gov

Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

• •U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

ii

2010-2234

Unlimited Release

Printed Feburary 2011

Teuchos C++ Memory Management Classes, Idioms, and

Related Topics

The Complete Reference

Trilinos version 11.0

A Comprehensive Strategy for Safe and Efficient Memory Management in

C++ for High Performance Computing

Roscoe Bartlett

Abstract

The ubiquitous use of raw pointers in higher-level code is the primary cause of all memory usage

problems and memory leaks in C++ programs. This paper describes what might be considered a radical

approach to the problem which is to encapsulate the use of all raw pointers and all raw calls to new and

delete in higher-level C++ code. Instead, a set of cooperating template classes developed in the

Trilinos package Teuchos are used to encapsulate every use of raw C++ pointers in every use case

where it appears in high-level code. Included in the set of memory management classes is the typical

reference-counted smart pointer class similar to boost::shared ptr (and therefore C++0x

std::shared ptr). However, what is missing in boost and the new standard library are non-reference

counted classes for remaining use cases where raw C++ pointers would need to be used. These classes

have a debug build mode where nearly all programmer errors are caught and gracefully reported at

runtime, i.e. essentially eliminating undefined behavior related to memory usage. The default optimized

build mode strips all runtime checks and allows the code to perform as efficiently as raw C++ pointers

with reasonable usage. Also included is a novel approach for dealing with the circular references

problem that imparts little extra overhead and is almost completely invisible to most of the code (unlike

the boost and therefore C++0x approach). Rather than being a radical approach, encapsulating all raw

C++ pointers is simply the logical progression of a trend in the C++ development and standards

community that started with std::auto ptr and is continued (but not finished) with std::shared ptr

in C++0x. The goal is nothing short of eliminating undefiend behavior related to memory usage from

C++ programs without destroying the low-level control and performance of C++ programs.

iii

iv

Contents

Preface . viii

1 Introduction . 1

2 Fundamental problems with raw C++ pointers . 5

2.1 Problems using raw C++ pointers for handling single objects . 5

2.2 Problems using raw C++ pointers for handling arrays of objects . 6

2.3 Problems with the incompatibility of new/delete and try/throw/catch 7

3 Problems with common approaches for addressing memory management in C++. 10

3.1 Problems with using std::vector for handling all arrays . 10

3.2 Problems with relying on standard memory checking utilities . 13

4 Important prerequisites . 16

4.1 Value types versus reference types . 16

4.2 Non-persisting versus persisting and semi-persisting associations . 18

5 Teuchos classes for safer memory management and usage . 23

5.1 Overview of basic approach employed by Teuchos memory management classes 23

5.2 The proper role of raw C++ pointers . 26

5.3 Common aspects of all Teuchos memory management classes . 27

5.4 Memory management classes replacing raw pointers for single objects 27

5.4.1 Teuchos::Ptr<T> . 28

5.4.2 Teuchos::RCP<T> . 30

5.4.3 Raw C++ references . 32

5.5 Memory management classes replacing raw pointers for arrays of objects 32

5.5.1 Teuchos::ArrayView<T> . 34

5.5.2 Teuchos::ArrayRCP<T> . 36

5.5.3 Teuchos::Array<T> . 39

5.5.4 Teuchos::Tuple<T,N> . 41

5.5.5 Array views . 43

5.6 Const versus non-const pointers and objects . 44

5.7 Conversions . 45

5.7.1 Implicit and explicit raw-pointer-like conversions . 45

5.7.2 Conversions between different memory management types . 49

5.7.3 Implicit type conversion problems and shortcomings . 52

5.8 Core idioms for the use of the Teuchos memory management classes 58

5.8.1 The non-member constructor function idiom . 58

5.8.2 General idioms for handling arrays of objects . 60

5.8.3 Idioms for class object data members and local variables . 61

5.8.4 Idioms for the specification of formal arguments for C++ functions 63

5.8.5 Idioms for returning objects from C++ functions . 68

5.9 Reference-counting machinery in-depth . 76

5.9.1 Basic reference counting machinery . 76

5.9.2 Circular references and weak pointers . 79

5.9.3 Customized deallocators . 86

5.9.4 Embedded objects . 90

5.9.5 Extra data . 92

5.10 Roles and responsibilities for persisting associations: factories and clients 94

5.11 Debug-mode runtime checking . 95

5.11.1 Detection of null dereferences and range checking . 95

v

5.11.2 Detection of circular references . 96

5.11.3 Detection of dangling references . 98

5.11.4 Detection of multiple owning RCP objects . 100

5.11.5 Performance of debug-mode checking versus memory checking tools 102

5.11.6 Limitations of debug-mode runtime checking . 103

5.11.7 Exception handling and debugging . 105

5.12 Optimized performance . 107

5.12.1 Reference counting overhead . 108

5.12.2 Array access and iterator overhead . 113

5.12.3 Performance tuning strategies, semi-persisting associations . 114

5.13 Related idioms and design patterns . 119

5.13.1 The inverted object ownership idiom . 119

5.13.2 The separate construction and just-in-time initialization idioms 121

5.13.3 The object self-reference idiom . 124

5.13.4 The generalized view design pattern . 128

5.14 Comparison with other class libraries and the standard C++ library . 139

5.15 Advice on refactoring existing software . 141

6 Miscellaneous topics . 144

6.1 Essential and accidental complexity, making implicit concepts explicit 144

6.2 Philosophy of memory management: Safety, speed, flexibility and 100% guarantees 146

7 Conclusions . 148

References . 149

Appendix

A Summary of Teuchos memory management classes and idioms . 151

B Commandments for the use of the Teuchos memory management classes . 159

C Argument for using a signed integer for size type in the Teuchos array classes 162

D Raw performance data . 166

D.1 Raw RCP performance data . 166

D.2 Raw Array performance data . 169

Figures

1 UML Class Diagram showing non-persisting and persisting associations 20

2 Conversions between different single-object memory management types. 46

3 Conversions between array memory management types. 47

4 Basic design of the Teuchos reference-counting machinery. 76

5 Example of several RCP objects pointing to the same RCPNodeImpl object. 78

6 Simple circular reference between two objects. 80

7 Simple circular reference between two objects broken using a WEAK RCP. 81

8 Weak pointer scenario where ClientA is deleted first . 82

9 Weak pointer scenario where ClientB is deleted first . 84

10 Example of a circular chain involving many objects and many classes. 85

11 Example of duplicate owning RCPNodeImpl objects . 101

12 Timings for allocating and deallocating objects using RCP . 110

13 Timings of basic RCP operations on for three compilers . 112

vi

14 Timings for basic Array, ArrayRCP, and ArrayView operations . 115

15 Depiction of contiguous and non-contiguous multi-vector column views. 129

16 Parent and child classes for “generalized view” design pattern. 130

17 State behavior for parent object in “generalized view” design pattern. 130

Tables

1 Basic Teuchos memory management utility classes for encapsulating raw pointers. 24

2 Summary of capabilities of the basic Teuchos memory management classes. 24

3 Teuchos array container classes. 25

4 Common members and non-members for all types . 27

5 Additional non-members for array types . 33

6 Equivalences between raw pointer and smart pointer types for const protection 45

7 Basic implicit and explicit conversions by smart-pointer types. 46

8 Summary of basic conversions supported involving single objects. 50

9 Summary of basic conversions supported for contiguous arrays. 51

10 Idioms for class data member declarations for value-type objects. 62

11 Idioms for class data member declarations for reference-types objects. 62

12 Idioms for passing value-type objects to C++ functions. 64

13 Idioms for passing reference-type objects to C++ functions. 65

14 Idioms for returning value-type objects from C++ functions. 69

15 Idioms for returning reference-type objects from C++ functions. 70

16 Overhead of runtime checking for serial Tpetra test suite. 103

17 Performance testing platforms. 107

18 Sizes of RCP and boost::shared ptr objects for 64 bit GCC 4.1.2. 109

vii

Preface

This document describes the basic problems with raw memory management in C++ and presents an

approach to addressing the problems by encapsulating all raw C++ pointers in a system of cooperating

types. Almost every aspect is presented and issues of detailed usage, safety, performance, suggested idioms

and many other topics are discussed. This is a fairly lengthy document with more than 140 pages in the

main body and with 20 pages of appendices. This may seem like a lot of material to read through but

consider that the 1500+ pages of mainstream literature on modern C++ usage in just the references

[29, 31, 12, 26] still leaves a language that makes it too easy to write programs with undefined behavior

(i.e. segfault) and memory leaks.

While this is a long document, there is a much shorter path given below that gives the basics for the

anxious reader that does not need all the background material or the information on the many interesting

side topic discussed.

Abbreviated table of contents:

• Section 1 “Introduction”

• Section 4.2 “Non-persisting versus persisting and semi-persisting associations”

• Section 5.1 “Overview of basic approach employed by Teuchos memory management classes”

• Section 5.4 “Memory management classes replacing raw pointers for single objects”:

• Section 5.5 “Memory management classes replacing raw pointers for arrays of objects”

• Section 5.8 “Core idioms for the use of the Teuchos memory management classes”

• Section 5.10 “Roles and responsibilities for persisting associations: factories and clients”

• Section 5.14 “Comparison with other class libraries and the standard C++ library”

• Appendix A “Summary of Teuchos memory management classes and idioms”

• Appendix B “Commandments for the use of the Teuchos memory management classes”

The material shown above should be enough to a) give a basic idea of the motivation for the Techos

memory management classes, b) describe the basic foundations for the classes, c) present the names,

identities, and basic usage for each of the classes, d) describe the core idioms for the use of the classes, and

e) mention how these classes compare with other classes in the Boost and the standard C++ libraries. This

is the most basic material that should answer the most basic questions that most developers will have. The

material in Appendix A and Appendix B should be used as a (relatively) short reference guide for the use

of these classes. This material together with some existing code examples (e.g in Trilinos) should give an

experienced C++ developer enough to get started using these classes in a productive way. Finally, the

reader should go through the full table of contents at least once to get an idea of the variety of topics

covered and where to look when more information is needed (and most developers will need to know most

of this extra information at some point).

The rest of the material covered in this document either provides more background that might be needed to

persuade some readers or expands on a number of topics that almost every developer will need to consider

viii

at some point while using these classes including a) how to deal with type conversion problems, b) how the

basic reference-counting machinery works, what types of debug-mode runtime checking is performed and

how to debug problems when exceptions are thrown, c) what optimized performance should look like and

how to better optimize code, d) what related idioms are useful or needed to fully exploit these classes, e)

guidance on how to refactor existing software, and f) other related topics like a discussion of essential and

accidental complexity.

Hopefully this document will be educational and help open the one’s mind to what is possible to achieve in

terms of safety and performance in modern C++ programs.

The classes and idioms described in this document have been encorporated into the coding guidelines

document described in [5].

ix

x

1 Introduction

A critical problem in computational science and engineering (CS&E) software as well as in other types of

software developed in C++ is in the effective and safe management of memory and data. CS&E software

often has the goal of high performance where arbitrary data copy leads to undue overhead and can actually

complicate the software in many cases. It is common for CS&E software to share and pass around large

blocks of memory in order to do work efficiently (however, common approaches such as described in [13]

lead to many of the problems that exist in CS&E programs). At the most basic level, large arrays of integral

and floating point data are managed along with more complex general objects and arrays of objects. In

C++, the only universally accepted way to deal with memory for single objects and arrays of objects is to

use raw C++ pointers. However, raw C++ pointer facilities for the manipulation and sharing of basic

memory are inherently unsafe and error prone. The problem is further exacerbated when larger programs

composed out of separately developed and maintained components are integrated together. Assumptions

about the origin, ownership, and process for reclaiming memory and other resources remain the most basic

problems with lower-level C++ programming techniques and are unfortunately still ubiquitous in the C++

community and even in the current C++ best-practices literature [31, 26]. The general C++ and CS&E

communitie’s inability to effectively address the basic problem of the usage of memory in large-scale

modular C++ codes affects every aspect of software quality, productivity, reusabliltiy, and undermines the

most basic software verification foundation for these codes. The challenges of writing software that uses

raw memory management results in components that are overly rigid in how they can be used and reused

which fundamentally detracts from the impact that such software could otherwise have and makes it more

difficult develop and maintain. The problems created by the use of raw memory management can

single-handily derail the vision of a large interconnected network of reusable CS&E software components

developed and used by many different CS&E organizations [33]. Therefore, the issue of memory

management has as much or more impact on the macroscopic properties of CS&E software components as

it does on low-level internal software development.

C++ is a large and complex language that very few people really know how to use in a confident and

successful way. Arguably the most serious problems in C++ are related to dynamic memory management

(which must be used with any moderately complex object-oriented program) and raw access to memory

(e.g. array and pointer usage errors). The built-in C++ support for dealing with dynamic memory allocation

with new and delete is fundamentally incompatible with the built-in exception handling mechanism using

try, throw, and catch. One cannot effectively build large-scale integrated software using just these

low-level language features at the application programming level. Software developed this way yields

undefined behavior (e.g. segfaults) and leaks memory unpredictably and is extremely difficult to integrate

with other code. The only successful way to use C++ to create complex robust software is to develop and

rigorously adopt a set of programming idioms for safely dealing with memory. By developing the right

support software and associated idioms, we make C++ programs safer, better defined, faster to develop, and

more efficient when run. The development of std::vector and std::shared ptr are steps in the right

direction by the C++ standards have not gone far enough (as will be explained below).

The reason that C++ is in this state of affairs is due to how C++ came into being and how it evolved over

many years [28, 30]. C++ was first developed in the early 1980s as an extension to the popular C

programming language and was first called “C with Classes”. At the time, high efficiency, very low

runtime overhead, and strong compatibility with C were critical requirements to the success of the new

language. Without this, the original creator of C++, Bjarne Stroustrup, concluded that C++ would be

“stillborn” [29]. The first C++ compilers were little more than preprocessors putting out C code on the

back-end which was then compiled into executable binary code.

1

As the years went on, however, object-oriented programming was refined, computers become faster with

more memory, and it was realized that more runtime support was required to enable more advanced usages

of C++. As new features were added to C++ to support new programming idioms, a strong need for

backward compatibility constrained the design of the language, sometimes making different language

features incompatible when used together in raw form. The most unfortunate example of this, which was

already mentioned, is the fundamental incompatibility of built-in dynamic memory management (i.e. using

new/delete) and built-in exception handling (i.e. using try/throw/catch) that was added more than a

decade later [28].

Because of the way that C++ “evolved” along with a strong need for backward compatibility, we have a

language that is a disaster when used in raw form in undisciplined ways on complex large-scale software.

Many programming teams have exploited this natural capability of C++ to create travesties of software

which in turn have dumbfounded many a C++ programmer (and entire teams) and have resulted in giving

C++ a bad name in the general software engineering community (see Section 6 “DDD Matters Today” in

[1] and “The Case of the Construction Blob” in [15, Chapter 9] for a few examples of C++ bashing).

More specifically, using low-level manual memory management (e.g. new/delete, raw pointers

everywhere) at all levels in C++ has resulted in several negative consequences in the development of C++

(and C) software that other more modern languages (e.g. Java and Python) have avoided:

• Programs that use raw memory management are more difficult to write and debug because it is

difficult to track down invalid memory usage that results in undefined behavior (e.g. segfaults),

double deletes, and memory leaks. (Also, memory checking tools like Valgrind and Purify are too

slow and do not catch enough of these types of errors to adequately mitigate the problem.)

• Programs that use raw memory management can have many “hidden” memory usage errors (i.e.

undefined behavior) that can linger in the code for months or years which damage the most basic

foundations of software quality and verification. Many of these programs are “ticking time bombs”

just ready to go off, sometimes with disastrous consequences for users and developers alike.

• Dealing with raw memory management at all levels consumes large amounts of developer focus

which detracts from more general design focus. This results in software with lower quality designs

compared to software written in other modern languages developed using the same amount of effort.

• Developers maintaining C++ programs that use raw memory management typically have a high

degree of paranoia and fear about modifying the software (and for good reason because modifying

such software is dangerous and error prone). This results in the tendency to not refactor software as

requirements and domain knowledge change [14] which therefore results in software that dies the

slow painful death of software entropy [8].

• Software that uses raw memory management at all levels necessarily have designs that overly

constrain how the software is used and reused. For example, in such programs factory objects

typically have to outlive the products they create and must also be responsible for deleting the

objects they create. This results in large numbers of “static” factory objects that make the software

hard to maintain and reuse in reasonable contexts.

The consequences of raw memory management described above are all too common in C++ development

organizations and software produced by such organizations. This is why the general software development

2

community is largely moving away from C++ and instead moving to use more modern languages that do

not require manual unchecked memory management [1].

However, C++ has some unique features that differentiate it from every other language in wide use which

include:

• Strong typing (leads to high-performance code)

• High-performance native code

• Support for creating very efficient concrete data types with efficiency on par with built-in data types

that do not require dynamic memory management (i.e. true stack-based objects)

• Support for operator overloading

• Support for object-oriented programming

• Support for generic programming (i.e. templates)

• A powerful turing-complete compile-time programming mechanism (i.e. template

meta-programming)

No other programming language with wide availability has this powerful set of features. For instance, C++

can be used to create class libraries for capabilities like automatic differentiation [18] for computing

derivatives of functions that achieves a level of generality and efficiency that has no rival in a software

library in any other programming language (e.g., see the Trilinos1 package Sacado2 [27]). It is precisely the

above feature set along with wide availability of high quality compilers on every major platform (including

the cutting-edge massively parallel computers), good interoperability with other languages (through C

interoperability), and strong support for next generation architectures [20] that makes C++ so attractive for

writing computational science & engineering software in the first place.

It is also this unique feature set that is C++’s saving grace with respect memory management problems. In

C++, one can actually develop a set of new data types that in essence can be used to develop new

programming environments in C++. This essentially allows one to define a new programming language

within C++ with a level of efficiency and flexibility that does not exist in any other programming language.

This is exactly what this paper advocates with respect to basic memory management in C++; developing a

new higher-level programming language in C++ for abstracting and encapsulating all raw memory usage as

well as dynamic memory management that is very compatible with the built-in C++ exception handling

mechanism. The approach being described here is really just the systematic and (arguably) elegant

application to the approaches advocated in “Code Complete Second Edition” [24, Section 13.2: Pointers]

for instance.

This paper describes a set of low-level C++ classes and supporting software in the Trilinos package

Teuchos3 that are used to encapsulate all raw pointers and enable strong debug-mode runtime checking

while allowing for very high performance in non-debug-mode optimized builds. This ideas and approaches

are built on the the ideas and foundations of standard C++ classes like std::vector and

std::shared ptr but fill in all of the gaps.

1http://trilinos.sandia.gov
2http://trilinos.sandia.gov/packages/sacado/
3http://trilinos.sandia.gov/packages/teuchos/

3

The Teuchos memory management classes and the idioms that they help to define (which are described in

this paper) do not remove the need for programmers to learn and understand the intricate details of the C++

memory model and type system. On the contrary, learning to effectively use these memory management

classes requires more effort over just learning raw C++. However, the payoff is that the programs that result

from the use of these classes and idioms will be more likely to be correct on first writing, will be easier to

debug when there are defects, will be easier and safer to maintain, and will be more self documenting

(which helps all of the above). In fact, the self-documenting expressiveness of the resulting programs

written using these classes and idioms is unmatched in any other programming language currently in

popular use, including Java and Python. This statement will be backed up throughout this paper and then

reiterated in Section 6.1.

The remainder of this paper assumes that the reader has some basic knowledge of C++ and is somewhat

familiar with smart reference-counted pointer classes like boost::shared ptr (which is the basis for the

new C++0x std::shared ptr class). The Teuchos equivalent for these smart pointer classes is

Teuchos::RCP which is abbreviated here as just RCP in sample code. If the reader is not familiar with the

basics of smart reference-counted pointer classes, then they should refer to [2] and [31]. If the reader is not

familiar with fundamental C++ concepts like implicit type conversions, templates, object lifetime models,

raw references and pointers and other basic topics, then some more basic background will be needed.

However, specific references to basic C++ material in books like [26, 29, 31] are made throughout this

document. So if the reader is a novice C++ programmer and is willing to look up the mentioned references,

then this paper can be a good guide to help learn this basic C++ material as well.

A final warning: the material in this document is fairly detailed and will take a significant investment in

time and experience writing code involving the Teuchos memory management classes using the idioms

described here before a developer will be proficient. It takes years just to master raw C++ so it should be no

surprise that learning a new set of idioms to fix a large number of the problems with raw C++ will also take

a significant amount of time and effort. What is needed is a culture change in the C++ programming

community where this type of approach and the idioms described here are taught at a very early stage;

much like the STL is now being taught in introductory C++ courses. What we need is a revolution in C++

education but we have to start somewhere and that is what this paper is all about, getting started and on the

road to a better generation of C++ programmers and C++ software. However, note that this document is not

a tutorial but instead is a complete reference guide to the Teuchos memory management guide that covers

almost every possible issue and reasonably related topic.

The body of this document is organized as follows. The fundamental problems with raw C++ pointers is

described in Section-2. Common (suboptimal) approaches for addressing memory management problems

are discussed in Section 3. Some important prerequisite concepts like value-types versus references-types

and persisting versus non-persisting associations are defined in Section 4. With all this background and

context in place, the Teuchos memory management classes are presented in Section 5. The basic outline of

the approach in Section 5.1 is perhaps the first section one would jump to in order to get a quick idea what

the Teuchos memory management classes are all about. Finally, taking a step back, the concepts of

essential and accidental complexity and a philosophical discussion of the trade-offs between speed, safety

and generality related to memory management are discussed in Section 6. Concluding remarks are given in

Section 7.

4

2 Fundamental problems with raw C++ pointers

This section summarizes some of the fundamental problems with basic C++ features related to raw

pointers. What is going to be argued is that while many people will claim that C++ pointers are strongly

typed, it will be shown that raw pointers are actually very weakly typed in many respects and how this

weak typing is the cause of many programming errors that result in incorrect programs and with undefined

behavior (e.g. segfaults).

In the following examples, the simple classes shown in Listing 1 are used in demonstration code:

Listing 1 :

class A {

char dummy_;

char *char_ptr_;

public:

A(...);

void incrementA() { ++(*char_ptr_); }

};

class B : public A {

int size_;

int *int_ptr_;

public:

B(...);

void incrementB() { ++(*int_ptr_); }

};

The concrete class hierarchy in Listing 1 was chosen to demonstrate some insidious and perhaps less well

known flaws in the C++ type system when dealing with raw C++ pointers.

2.1 Problems using raw C++ pointers for handling single objects

There are a number of problems with using raw C++ pointers to manage single objects. For example, given

a class object of type B in Listing 1 consider a pointer declared as:

B some_b(...);

B *b_ptr = &some_b;

Some of the legitimate things that one can do with this pointer are:

// Call member functions

b_ptr->incrementA();

b_ptr->incrementB();

// Extract reference

B &b_ref = *b_ptr;

5

// Copy pointer

B *b_ptr2 = b_ptr;

// Implicit conversion to const

const B *b_ptr3 = b_ptr;

// Implicit conversion to base type

A *a_ptr4 = b_ptr;

However, nothing good can ever come of any of the following operations when a pointer is only pointing to

a single object:

b_ptr++

b_ptr--

++b_ptr

--b_ptr

b_ptr+i

b_ptr-i

b_ptr[i]

No C++ compiler I have ever worked with will even issue a warning when array operations are invoked on

a raw C++ pointer for which it is clear is only pointing to a single object.

The problem here of course is that there is no way to tell the C++ compiler that a raw pointer is only

pointing to a single object. With respect to differentiating single objects and arrays of objects, C++ pointers

are untyped and the compiler provides no help whatsoever in statically asserting correct usage. This is

strike one for the notion that C++ pointers are strongly typed!

2.2 Problems using raw C++ pointers for handling arrays of objects

When considering the semantics of raw C++ pointers one realizes that raw pointers are really designed

primarily for dealing with contiguous arrays of objects (save for one exception that is mentioned below).

This is because almost every operation that C++ defines for raw pointers makes sense and is fairly well

defined when raw C++ pointers are pointing with contiguous arrays of objects. Every valid C++ operation

will not be reviewed for raw pointers to contiguous arrays of objects (see [29] for a complete listing).

Instead, a few examples are shown where the C++ type system using raw pointers falls flat on its face when

dealing with arrays of memory.

One particularly troubling example where the C++ type system fails when dealing with raw C++ pointers

to contiguous arrays of memory is shown in Listing 2.

Listing 2 :

void foo(const int n) {

B *b_array = new B[n];

A *a_array = b_array; // Compiles just fine :-(

for (int i = 0; i < n; ++i) {

a_array[i].incrementA(); // KABOMMMMM!

6

}

delete [] b_array;

}

There are a lot of beginning and even some more experienced C++ programmers that would think that the

C++ code in Listing 2 is just fine. The resulting program has undefined behavior and may seem to run okay

in some cases but in the above case will almost certainly segfault right away. The above code fragment is

wrong, wrong, wrong as described in [12, Gotcha 33] and [31, Item 100]. Without going into great detail,

converting from a pointer for an array of type B to a pointer of type of base type A is almost always asking

for disaster because the alignment of the base type A will be wrong according to the full type B (again see

[12, Gotcha 33] all the gory details). As a result, for the second iteration i=1, the embedded pointer in

a array[1].char ptr is pointing to garbage because on most 32 bit machines with most compilers, the

address in a array[1].char ptr is actually the binary representation of the integer b array[0].size .

Therefore, calling a array[1]->incrementA() on most 32 bit machines is equivalent to performing:

++(*reinterpret_cast<char*>(b_array[0].size_)); // KABOMMMMM!

If this sort of thing comes as a surprise to C++ developers, then they should probably fear using raw

memory in C++ more than they currently do and should seriously consider using the safer approach to

encapsulating raw memory usage that is being advocated in this paper.

So how did C++ come to allow such completely wrong and dangerous operations like shown in Listing 2?

It is because of the untyped dual nature of raw C++ pointers in trying to handle both single objects and

contiguous arrays of objects with one data type where the full set of operations are not appropriate for

either. The ability to cast raw C++ pointers from derived types to base types only ever generally makes

sense when the pointer is pointing to a single object and will not be interpreted as a pointer to a contiguous

array of objects. Note that C does not have this problem since there is no such thing as type derivation and

the designers of C never even envisioned that raw C pointers would be used for such a thing. However,

when the original designer of C++ adopted the C type system along with raw pointers and tried to apply it

to an object-oriented language, he inadvertently opened up a number of serious language gotchas that we

are still living with to this day. This is another strike for the notion that C++ pointers are strongly typed!

2.3 Problems with the incompatibility of new/delete and try/throw/catch

The use of raw pointers and raw calls to new and delete is also fundamentally incompatible with the

built-in C++ exception handling mechanism using try/throw/catch. For example, the following code will

leak memory if the function someFunc() throws a C++ exception:

void foo()

{

A *a = new A(...);

someFunc(); // Could throw an exception

delete a; // Will never be called if someFunc() throws!

}

7

According to current C++ best practices relating to memory management and exception handling as

described in [26, Item 29] and [31, Item 71], code like shown above that leaks memory is totally

unacceptable in production quality C++ programs. This fundamental incompatibility of the built-in C++

dynamic memory management facilities using new/delete and the built-in exception handling mechanism

using try/throw/catch was clear even to the committee that created the official 1998 C++ standard.

However, again, because of the need for backward compatibility they were powerless to fix the problem at

the language level. Instead, the C++ standards committee included the first standard C++ smart pointer

class; auto ptr. The class auto ptr solves only the most basic problem with raw C++ pointers and that is

that it ensures that memory will be reclaimed when exceptions are thrown. For example, the following

refactored function will not leak any memory when someFunc() throws:

void foo()

{

std::auto_ptr<A> a(new A(...));

someFunc(); // Could throw an exception

// NOTE: delete will get called on the A object no matter how this

// function exists (i.e. normal exit or with a throw) since it is

// called by the destructor of the stack object ’a’ of type

// std::auto_ptr<A>.

}

The introduction of std::auto ptr is perhaps the first example of where a user-defined type was added to

the standard C++ library in order to define an idiom meant to fix a fundamental C++ language flaw due to

incompatible language features. Note the term “flaw” is used and not “deficiency”. It is generally excepted

in most modern programming languages that the language proper will not support every programming

model or idiom that is of general interest and instead (class) libraries are provided to fill in the gaps. The

problem is that the language definition itself is flawed with respect to the raw use of new/delete along

with try/throw/catch and is not just simply missing some desirable feature. One could argue that what

C++ is really missing is garbage collection (GC) but even that is not the case because to add GC would be

fundamentally incompatible with the current user-controlled memory management facility using new and

delete. There is a lot of C++ code out there that requires that destructors for objects be called exactly

when expected such as when delete is called (and there are idioms such as defined in Section 5.13.4 that

depend on this behavior). Any form of language-supported GC will break some backward compatibility of

C++ and therefore we may never see a C++ standard with full GC. Also, removing the ability to precisely

control when destructors are called and memory is reclaimed would make C++ less attractive for many

domains where such low-level control is critical (e.g. embedded programming, systems programming,

scientific programming).

The Boost library and the up-coming C++0x standard add more types that continue in this trend of

providing new user-defined types and idioms to address fundamental C++ language flaws and deficiencies.

However, as described in meat of this paper, both the Boost and the C++0x standard libraries fall short of

providing a complete and comprehensive solution to the problems with raw C++ pointers and raw access to

memory.

Note that the upcoming C++0x standard as it is currently defined (at least the time of this writing) will do

nothing to fix the majority of these nonsensical raw C++ pointer gotchas because to do so would destroy

backward compatibility of millions of lines of existing C++ code. Because of the need for backward

compatibility, we cannot rely on any future C++ standard to fix the basic problems with raw C++ pointers.

Instead, this document advocates using new C++ user-defined types to create a new safer type-system in

8

C++ and avoiding the direct use of raw C++ pointers except where required to interact with non-compliant

code.

9

3 Problems with common approaches for addressing memory management

in C++

Because of some of the obvious problems with using raw C++ pointers to access raw memory and using

raw calls to new and delete to perform dynamic memory management, various authors have advocated a

number of different approaches for addressing these problems. A few of these approaches will be described

along with arguments as to why they are far too sub-optimal.

3.1 Problems with using std::vector for handling all arrays

A very common approach to try to get around using raw C++ pointers for managing contiguous arrays of

data is to use the container class std::vector in every use case where a raw C++ array or pointer to an

array would be used. Before describing use cases where std::vector is being poorly used, first a review

is given for what std::vector is and what it is good for. The standard library class std::vector is a

general-purpose concrete contiguous data container class for storing and retrieving value objects4. What

makes using std::vector attractive as compared to a simple class that a developer would write for

themselves is that:

• std::vector is a Standard Template Library (STL) compliant data container which makes it easy to

use with STL-like generic algorithms.

• std::vector contains functions for efficiently expanding and shrinking the size of the array that can

have platform/compiler specific optimizations with much better performance than what a developer

would roll on their own.

• std::vector is standardized so one can use it as a means for interoperability with other software in

appropriate situations.

These are pretty much the advantages of using std::vector over other alternatives. When used as a

general purpose data container where one will be changing the size of the array on the fly, std::vector is

convenient, general, and efficient (just what components from a standard library should be). However, in

other use cases, std::vector is far from convenient, general, or efficient. As one example, consider using

std::vector to replace raw C++ pointers for array arguments in all C++ functions as some authors have

suggested (e.g. see [21]). For example, consider a VISITOR [17] interface that operates on blocks of data

(similar to the RTOp interface described in [6]) along with a concrete subclass shown in Listing 3.

Listing 3 :

template<class T>

class BlockTransformerBase {

public:

virtual ˜BlockTransformerBase();

virtual void transform(const int n, const T a[], T b[]) const = 0;

};

4See Section 4.1 for a definition of “Value Types”.

10

template<class T>

class AddIntoTransformer : public BlockTransformerBase<T> {

public:

virtual void transform(const int n, const T a[], T b[]) const

{

for (int i = 0; i < n; ++i)

b[i] += a[i];

}

};

The VISITOR interface shown in Listing 3 allows clients to accept any BlockTransformerBase object

and allow it to transparently implement any number of user-defined transformations. Note that virtual

funtions cannot be templated so it is not possible for the transform(...) function to be templated on an

iterator type but must instead accept some fixed representation of the arrays of data to be operated on. The

advantages of the transform(...) function in Listing 3 are that a) it is clean, b) the arrays of data can be

sub-views of large arrays, and c) it will yield very fast code. Of course the problem with the above function

transform(...) is that is uses raw C++ pointers. How does the function transform(...) know that a

and b are valid pointers and really point to valid arrays of data with at least n elements. It is impossible for

the function transform(...) to assert anything about the data and completely relies on the caller of the

function to validate the data. Even in a debug build of the code, there is no way for the implementation of

the function transform(...) to validate that the preconditions concerning arguments have been met. This

is not good and does not allow for even the most basic approaches for defensive programming.

Therefore, some C++ programmers look at this and then they change functions like transform(...) in

Listing 3 to use std::vector which is shown in Listing 4.

Listing 4 :

template<class T>

class BlockTransformerBase {

public:

virtual ˜BlockTransformerBase();

virtual void transform(const std::vector<T> &a, std::vector<T> &b) const = 0;

};

template<class T>

class AddIntoTransformer : public BlockTransformerBase<T> {

public:

virtual void transform(const std::vector<T> &a, std::vector<T> &b) const

{

DEBUG_MODE_ASSERT_EQUALITY(a.size(), b.size());

for (int i = 0; i < a.size(); ++i)

b[i] += a[i];

}

};

The advantages of the function in Listing 4 are that a) the size of each array is kept with the pointer to the

array itself inside of each std::vector object, b) The sizes of the arrays can be asserted by the

11

implementation of the function transform(...), c) it is easy for callers who already use single

std::vector objects.

While this use of std::vector replaces raw C++ pointers as basic array function arguments, it has several

serious problems in both usability and performance in some important use cases. The primary

disadvantages of using std::vector as general array arguments to functions is a) there is no flexibility in

how the arrays are allocated, and b) one cannot pass sub-views of larger arrays of data.

To illustrate the problems with using std::vector for all array arguments to functions, consider a

situation where the application wants to allocate big arrays of data and then operate on pieces of the array

based on different logic. One motivation for allocating big arrays of data is to avoid memory fragmentation

and improve data locality. Now consider in Listing 5 what the client code would have to look like when

using the form of transform(...) in Listing 4 which takes in std::vector objects.

Listing 5 : Client code that has to create temporary std::vector objects to call function that takes
std::vector arguments

void someBlockAlgo(const BlockTransformerBase &transfomer,

const int numBlocks, const std::vector<double> &big_a,

std::vector<double> &big_b)

{

DEBUG_MODE_ASSERT_EQUALITY(big_a.size(), big_b.size());

const int totalLen = big_a.size();

const int blockSize = totalLen/numBlocks; // Assume no remainder!

const int blockOffset = 0;

for (int block_k = 0; block_k < numBlocks; ++block_k, blockOffset += blockSize)

{

if (big_a[blockOffset] > 0.0) {

// Create temporary std::vectors to do function call

std::vector a(big_a.begin()+blockOffset,

big_a.begin()+blockOffset+blockSize);

std::vector b(big_a.begin()+blockOffset,

big_b.begin()+blockOffset+blockSize);

// Do the operation

transfomer.transform(a, b);

// Copy back into the output array

std::copy(b.begin(), b.end(), big_b.begin() + blockOffset);

}

}

}

As it is clear to see, the above client code that uses the std::vector version of transform(...) is

neither clean, nor efficient since temporary copies of all of the data have to be created just to make the

function call and then data has be be copied back into the full array.

Now consider the client code in Listing 6 which uses the raw C++ pointer version of transform(...) in

Listing 3.

Listing 6 : Example driver code that uses the raw-pointer version of transform(...)

12

void someBlockAlgo(const BlockTransformerBase &transformer,

const int numBlocks, const std::vector<double> &big_a,

std::vector<double> &big_b)

{

DEBUG_MODE_ASSERT_EQUALITY(big_a.size(), big_b.size()); const int

totalLen = big_a.size(); const int blockSize = totalLen/numBlocks;

const int blockOffset = 0;

for (int block_k = 0; block_k < numBlocks; ++block_k, blockOffset += blockSize)

{

if (big_a[blockOffset] > 0.0) {

transformer.transform(blockSize, &big_a[blockOffset], &big_b[blockOffset]);

}

}

}

As one can clearly see, using the raw C++ pointer version of transform(...) makes the client code much

cleaning and much more efficient. However, of course, if the client makes any mistakes with its arrays of

memory, then the resulting program will yield undefined behavior and (in the best case) will segfault, or

will silently produce the wrong result, or (in the worst case) actually produce the right result on the current

platform but will fail on other platforms.

The Teuchos memory management array classes make algorithms involving sub-views like shown above

very clean, very efficient, and very safe (see the same versions of this example code using these new

Teuchos classes in Section 5.5.5).

In summary, std::vector is not an efficient or convenient general-purpose replacement for raw C++

pointers as function arguments in many important use cases.

3.2 Problems with relying on standard memory checking utilities

Some programmers simply use raw C++ pointers and think that standard memory checking tools like

Valgrind5 and Purify6 will catch all of their mistakes. When I first started coding in C++ back in 1996, I

was very aware of the problems with using raw pointers in C++ after experiencing the segfaults and

memory leaks that all C++ programmers experience. At the time, I had experimented some with writing

my own utility classes that encapsulated raw C++ pointers and I considered taking that further. However, at

that time, I conjectured that going through the effort of encapsulating all raw C++ pointers might be a waste

of time because it would not be long until someone came up with a 100% bullet-proof memory checking

tool for C++ that would make my feeble programmer-controlled attempts to wrap raw pointers obsolete.

After more than 10+ years of C++ programming experience where I have written hundreds of thousands of

lines of C++ code on a number of different platforms/compilers, I have come to regret that decision.

Through painful experience and then through some more careful thought, I have come to realize that

memory checking tools like Valgrind and Purify will never be able to provide an even sufficient (certainly

not 100%) means to validate memory usage in C++ programs. With respect to existing tool

implementations, I have experienced cases where both Valgrind and Purify have reported not even a single

5http://valgrind.org
6http://www.ibm.com/software/awdtools/purify

13

warning before the program segfaulted (while running in the tool) with essentially no feedback at all. I will

not go into detail about what techniques memory tools like Valgrind and Purify use to verify memory usage

other than to say that they can do a lot by just taking control of malloc(...) and free(...) and in

inserting checks into the execution of the program by controlling the manipulation of the program stack.

One such case where Valgrind and Purify were completely unhelpful occurred with an off-by-one error

with std::vector using Linux/gcc (before I learned the GCC had a checked STL implementation). In the

end, the way that I found the off-by-one error was by just staring at the code over and over again until I

happened to see the problem. However, what I discovered through two days of debugging was that

std::vector used its own allocator which allocated big chunks of memory through malloc(...). It then

proceeded to do its own memory allocation scheme, which was very fast but was invisible to the watchful

eyes of Valgrind and Purify. Any reads to this block of memory looked fine to Valgrind and Purify because

it was all contained within the block returned from malloc(...). What the off-by-one error did was to

write over a library managed part of the memory block and that silent corruption would doom a later

attempt by std::vector to allocate memory.

There are other categories of use cases where external memory checking tools like Valgrind and Purify will

never be able to verify correct memory usage. One example is semantic off-by-one errors committed in

larger blocks of data. To demonstrate this type of error, consider the example code in the function

someBlockAlgo(...) in Listing 6 which uses the raw C++ pointer version of the function

transform(...) in Listing 3. Now consider what happens when a developer introduces an off-by-one

error such as shown in transform(...) in Listing 7.

Listing 7 :

template<class T>

void AddIntoTransformer<T>::transform(const int n, const T a[], T b[])

{

for (int i = 0; i <= n; ++i)

b[i] += a[i];

}

In case it is not obvious, the off-by-one error shown in Listing 7 is the replacement of the loop termination

statement i < n with i <= n which is a very common C++ programming error.

Now let’s consider the implications that the off-by-one error shown in Listing 7 will have on the data in

big b as driven by the code in Listing 6. If the last block block k=numBlocks-1 of data is processed, then

there is a reasonable chance a memory checking tool like Valgrind would catch the off-by-one error being

committed at the very end of the array big b. However, as described above, Valgrind may not catch even

this type of error. Also, note that turning on bounds checking with std::vector (i.e. by enabling

GLIB CXX DEBUG with gcc) will not catch this error either because of the way the raw pointers are

extracted in and and passed in the function call:

transformer.transform(blockSize, &big_a[blockOffset], &big_b[blockOffset]);

Now consider a defect caused by this off-by-one error for which no automated memory checking tool that

will ever be devised will ever be able to catch. This type of defect will occur, for example, when for the last

14

block block k=numBlocks-1 we have big a[(numBlocks-2)*blockSize] > 0.0 and

big a[(numBlocks-1)*blockSize] <= 0.0. In this case, only the next-to-last block of data will be

processed by the defective transform(...) function. This will not result in a classic off-by-one error that

a memory checking tool would catch because it would not touch memory outside of what is stored in

big b. However, this off-by-one error committed in Listing 7 would result in the array entry

big b[(numBlocks-2)*blockSize+blockSize] being erroneously modified. This is a defect that might

only slightly damage the final result of the program for the typical use case and might therefore go

unnoticed for years. However, when the program was really being used for something important years later

for a non-typical use case, this small off-by-one error could result in reporting incorrect results with

perhaps disastrous consequences.

The point that is trying to be made in the above example is that automated memory checking tools like

Valgrind and Purify will never be able to check the semantic correctness of the usage of memory. The

semantic off-by-one defect described above is 100% correct from a strict memory usage point of view (i.e.

only allocated memory can be written to and only allocated and initialized memory can be read from) but is

100% wrong from a semantic point of view (i.e. the function transform(...) can only operate on the

elements of data from 0 to n-1). The array memory management classes in Teuchos described in this

document help to verify that memory is used in a semantically correct way and throws exceptions for these

types of errors in a debug-mode build.

15

4 Important prerequisites

Before finally discussing the Teuchos memory management classes, a set of prerequisite concepts are

presented that are needed in order to understand the holistic memory management approach.

4.1 Value types versus reference types

Because of the flexibility of C++, many C++ programmers can and do implement a wide variety of types

yielding objects with different types of usage semantics. A quick summary of common “accepted” class

types in C++ is given in Item 33 “Be clear what kind of class you’re writing” in [31]. There is little point

here in trying to classify all of the crazy ways that people have used to code objects in C++ that stray from

these “accepted” class types. Instead, the recommendation here is to classify the majority of classes as

either value types or reference types. Value types and reference types are said to use value semantics and

reference semantics, respectively, and that is sometimes how these data-types are described in various C++

literature.

Value types in general:

• have public destructors, default constructors, copy constructors, and assignment operators (all

implementing deep copy semantics),

• have an identity that is determined by their value not their address,

• are usually allocated on the stack or as direct data members in other class objects,

• are usually not allocated on the heap (but can be for most value-type classes), and

• do not have any virtual functions and are not to be used as base classes (see Item 35 in [31]).

If S denotes a typical value type, the class definition of S includes:

class S {

pubic:

˜S();

S();

S(const S&);

S& operator=(const S&);

...

};

All of the built-in intrinsic C++ data-types like char, int, and double are value types. Likewise, class

types like std::complex and std::vector are also value types. Value types have also been called by

other names in the C++ literature. Stroustrup refers to value types as “true local variables” in [28]. The

term Abstract Data Type (ADT) in older C++ literature such as [9] usually maps to the concept of a value

type, but usually carries greater significance in implying that operator overloading is used to make an ADT

look more like a built-in C++ type (such as is the case for std::complex).

Alternatively, reference types in general:

16

• do not have a public copy constructor or assignment operator,

• are manipulated through a (smart) pointer or reference,

• have an identity that is primarily determined by their address and not their value,

• are allocated on the heap,

• typically are not permitted to be or cannot be allocated on the stack,

• are copied through an abstract clone function (if copying is allowed at all),

• have one or more virtual functions, and

• are usually designed to be used as base classes or are derived from base classes.

Reference types (employing reference semantics) are typically used for base classes in C++. Examples of

base classes in the C++ standard library include std::ios base and std::basic streambuf. Reference

types in the form of abstract base classes form the foundation for object-oriented programming in C++.

If A denotes a typical reference type class, the class definition of A generally includes:

class A {

pubic:

virtual ˜A();

virtual A* clone() const = 0; // NOTE: Should use RCP (see later)

virtual void someFunc() = 0;

...

protected: // or private

A(const A&);

A& operator=(const A&);

...

};

Note that one can almost always choose to manipulate a value type using reference semantics. For

example, it is very common to choose to dynamically allocate large value objects like std::vector and

then pass around (smart) pointers and references to the object to avoid unnecessary and expensive copying

and to facilitate the sharing of state.

While the ideas of value types and reference types and value semantics and reference semantics are long

established in the C++ literature (even if the terminology is not very uniform), many C++ programmers

either seem to not know about these idioms or choose not to follow them for some reason. By forcing the

majority of classes into either using value semantics or reference semantics one eliminates meaningless

variability in C++ programs and frees one’s self to think about more important things (see the discussion of

using standards to actually improve creativity in [24]).

Side Note: The somewhat rigid classification of C++ types into value types and reference types is similar

in motivation and in many other respects to Eric Evans’ differentiation of all domain types into Value

Objects and Entities in Domain Driven Design (DDD) [14]. While there are similarities between DDD’s

Value Objects and Entities and C++’s value types and reference types, respectively, there is not a

one-to-one mapping. In DDD, the distinction between a Value Object and an Entity has more to do with the

nature of the object in relation to the domain model and is not related to how memory is manged. Evans

assumes that one is using a language like Java where all objects use reference semantics.

17

4.2 Non-persisting versus persisting and semi-persisting associations

Another important prerequisite for understanding the Teuchos memory management classes is the

distinction between non-persisting associations and persisting associations. Working definitions for these

are:

• Non-Persisting associations are associations between two or more objects that exist only within a

single function call for formal function arguments, or a single statement for function return objects,

where no memory of any of the objects is retained as a side effect after the function returns or the

statement ends.

• Persisting associations are associations that exist between two or more objects that extend past a

single function call for formal function arguments, or a single statement for function return objects.

To help define these two different types of associations, consider the class and function definitions in

Listing 8 and shown in Figure 1.

Listing 8 : Classes using raw pointers with both non-persisting and persisting associations

class A {

public:

void fooA() const;

};

class B {

public:

void fooB1(const A &a) { a.fooA(); }

void fooB2() const { ... }

};

class C {

B* b_;

public:

C() : b_(0) {}

void fooC1(B &b, const A &a)

{ b_ = &b; b_->fooB1(A); }

void fooC2() const

{ b_->fooB2(); }

};

void someFunc(C &c, B &b, const A &a)

{

c.fooC1(b, a);

c.fooC2();

}

The function B::fooB1(...) in Listing 8 involves a non-persisting association with respect to the A and B

objects since no memory of the object a remains after the function B::fooB1(...) exists. Non-persisting

associations represent typical input/output-only arguments to a function.

18

The function C::fooC1(...) in Listing 8 creates a persisting association between a C object and a B object

since the memory of the B object is retained in the C object that persists after the function C::fooC1(...)

exits. This memory of the B object stored in the C::b pointer data member is then used to implement the

function C::fooC2(). Note that the function C::fooC1(...) also involves a non-persisting association

with the A object a since it is only used to call B::fooB1(...) and no memory of a lingers after

C::fooC1(...) exists.

Another interesting case is the nonmember function someFunc(...) also shown in Listing 8. While

someFunc(...) is a free function, it actually involves the creation of a persisting association between the

C and B objects as a side effect because it calls the C::fooC1(...) function.

In the idioms advocated in this paper, smart reference counted pointers are used for all persisting

associations and never for non-persisting associations. Using the basic Teuchos RCP class, the raw pointer

code in Listing 8 would be refactored into the code shown in Listing 9.

Listing 9 : Refactored classes to use RCP for persisting associations

class A {

public:

void fooA() const;

};

class B {

public:

void fooB1(const A &a) { a.fooA(); }

void fooB2() const { ... }

};

class C {

RCP b_;

public:

void fooC1(const RCP &b, const A &a)

{ b_ = b; b_->fooB1(A); }

void fooC2() const

{ b_->fooB2(); }

};

void someFunc(C &c, const RCP &b, const A &a)

{

c.fooC1(b, a);

c.fooC2();

}

Note that the classes A and B remain unchanged because they do not involve any persisting associations. It

is only the class C that needed to be refactored to handle the persisting association with B. The non-member

function someFunc(...) is also be modified since the creation of a persisting association is involved.

Most programming languages do not provide any means to differentiate between non-persisting

associations and persisting associations (see Section 6.1 for an expanded discussion). However, note that

the Unified Modeling Language (UML [16]) does differentiate between them in that persisting

19

Figure 1. UML Class Diagram showing non-persisting and persisting

associations for classes in Listing 8 and Listing 9.

relationships are shown with a solid line while non-persisting relationships are shown with a dotted line as

depicted for these example classes in Figure 1.

Another situation where the concepts of persisting and non-persisting associations comes up relates to how

objects are returned by C++ functions as return values. A persisting relationship is created through a

function return object if that object is remembered past a single statement. For example, consider the code

fragment in Listing 10.

Listing 10 : Example of a dangerous type of persisting association that can result in undefined behavior
(e.g. segfault)

std::vector<int> v(n);

...

int &ele = v[0]; // Creates a persisting return object relationship

...

ele = 5; // Changes v[0] much later!

The code fragment in Listing 10 shows a presenting relationship between the client code that is initializing

the local reference ele and the std::vector container object v. This is very fragile and dangerous code

because if v is re-sized, grown or have some other type of change, then the reference pointed to by ele can

become invalid. For example, the following code fragment will likely result in a runtime memory usage

error with undefined behavior and (if one is lucky) will segfault:

Listing 11 :

std::vector<int> v(n);

int &ele = v[0];

v.resize(10*n);

ele = 5; // ele is likely to be invalid here!

If one is unlucky, the statement ele = 5 will work just fine on one platform with one implementation of

the std::vector but will break on another platform when run with a different data set. Note that tools like

20

Valgrind and Purify may not flag the problem due to the way that many implementations of std::vector

deal with memory.

Basically the problem here is that the std::vector::operator[](size type) function returns a raw

C++ reference that should never be remembered past a single statement. The safe way to change an

element is:

Listing 12 :

std::vector<int> v(n);

v[0] = 5; // Non-persisting relationship!

v.resize(10*n);

Therefore, functions like std::vector::operator[](size type) which return raw C++ references

should only be used for non-persisting associations as shown above.

Before leaving the topic of persisting and non-persisting associations, one has to recognize that there exists

a third category of associations that lie in between strict persisting and non-persisting associations. This

gray area will be referred to here as semi-persisting associations defined as:

• Semi-persisting associations are associations that (like persisting associations) exist between two or

more objects that extend past a single function call for formal function arguments, or a single

statement for function return objects except where the use of the objects and the lifetime of the

association have more rigid constraints requiring greater care in use.

An example of a semi-persisting association is the use of an iterator to access an STL container as shown in

Listing 13:

Listing 13 :

void someFunc(std::vector<int> &v)

{

typedef std::vector<int>::iterator itr_t;

for (itr_t itr = v.begin(); itr != v.end(); ++itr) {

*itr = 5;

}

}

As shown in Listing 13, the iterator object itr is used well past (perhaps thousands of loop iterations)

where it was created by the statement itr t itr = v.begin(). There are, however, significant

restrictions on how such iterators can be used: a) the iterator cannot be accessed after the originating parent

object has been destroyed, and b) the iterator cannot be accessed after the structure of the originating parent

has changed (e.g. v.resize(...) was called). For the sake of performance, one has to allow for the use of

semi-persisting associations such as this where the optimized build of the code lacks the machinery to

detect invalid usage. However, note that in the case of the STL containers that in a debug-mode checked

21

STL build (supported by GCC and the Microsoft compiles for instance), these types of dangling iterator

references will typically be safely detected. This type of debug-mode runtime checking is the saving grace

for the use of iterators and other types of semi-persisting associations which makes their use acceptable. If

iterators to std::vector where simply hard-coded as raw pointers, this type of debug-mode runtime

checking would not be possible.

Semi-persisting associations also play a role in the use of the Teuchos memory management classes in

situations where performance is critical (see Section 5.12.3 and Commandments 6 and 8 in Appendix B).

22

5 Teuchos classes for safer memory management and usage

The primary purpose for the Teuchos memory management classes is to encapsulate all raw C++ pointers

in all high-level code and eliminate undefined behavior in C++ programs without sacrificing portability,

control or efficiency. These classes are efficient and general and, in a debug-mode build of the code, will

catch and gracefully report 99% or so of the programming errors typically made with the ubiquitous

high-level use of raw C++ pointers.

5.1 Overview of basic approach employed by Teuchos memory management classes

The basic approach being advocated here and implemented in the Teuchos memory management classes is

to:

• Encapsulate all raw C++ pointers in high-level code using specially designed memory management

classes, capture raw C++ pointers as soon as possible, and encapsulate raw calls to new in library and

application code.

• Provide a complete set of cooperating types that work together to safely and conveniently implement

all hand-offs of encapsulated raw C++ pointers using carefully scrutinized conversion code provided

with the classes. Also, never define implicit conversions from these safe types to raw C++ pointers

(or the safety of the entire type system falls apart).

• Differentiate memory management classes for handling single objects from those for handling

contiguous arrays of objects.

• Differentiate memory management classes according to persisting and non-persisting (and

semi-persisting) associations.

– Use reference counting for memory management classes designed to handle persisting

associations.

– Do not impose the overhead of reference counting for memory management classes designed to

handle non-persisting associations.

– Do not impose the overhead of reference counting for memory management classes designed to

handle semi-persisting associations (but provide the machinery for strong debug-mode runtime

checking).

• Provide encapsulations for all uses of raw C++ pointers for arrays of contiguous objects including

dynamically sized arrays, statically sized arrays, and stack-based arrays.

• Provide a default optimized mode where maximum performance and minimal overhead are the goals

where raw C++ pointer performance is achieved for all reasonable use cases.

• Provide an optional debug mode whose goal is to provide maximum runtime checking with

reasonably low overhead in order to catch all sorts of common errors like:

– Dereferencing null pointers (Section 5.11.1)

– Array access errors like off-by-one and other errors (Section 5.11.1)

23

Basic Teuchos smart pointer types

Non-persisting (and semi-persisting) Persisting

Associations Associations

single objects Ptr<T> RCP<T>

contiguous arrays ArrayView<T> ArrayRCP<T>

Table 1. Basic Teuchos memory management utility classes for encap-

sulating raw pointers.

Summary of operations supported by the basic Teuchos smart pointer types

Operation Ptr<T> RCP<T> ArrayView<T> ArrayRCP<T>

Raw pointer-like functionality

Implicit conv derived to base x x

Implicit conv non-const to const x x x x

Dereference operator*() x x x

Member access operator->() x x x

operator[](i) x x

operators ++, --, +=(i), -=(i) x

Other functionality

Reference counting machinery x x

Iterators: begin(), end() x x

ArrayView subviews x x

Table 2. Summary of capabilities of the basic Teuchos memory man-

agement classes.

– Incorrect iterator usage (Section 5.11.1)

– Circular dependencies (Section 5.11.2)

– Dereferencing dangling pointers (references) (Section 5.11.3)

– Multiple owning reference-counting node object (Section 5.11.4)

• Structure debug-mode checking such that it does not alter the observable behavior of correct

programs in any way. However, when debug-mode checking is enabled, the software should never

yield undefined behavior (e.g. segfault).

The basic templated Teuchos memory management classes for encapsulating raw C++ pointers for single

objects and arrays are Ptr, RCP, ArrayView, and ArrayRCP shown in Table 1. A summary of the

capabilities of these classes is shown in Table 2. What one can see from this table is that raw pointer-like

functionality is partitioned across these various sets of classes in logical and safe ways. For example,

array-related operations are not defined on the single-object classes Ptr and RCP but implicit conversion

from derived types to base types is allowed. Alternatively, the array classes ArrayView, and ArrayRCP do

not support the dangerous and ill-conceived ability to implicitly convert arrays of derived types to arrays of

24

Other Teuchos array container classes

Array class Specific use case

Array<T> Contiguous dynamically sizable, expandable, and contractible arrays

Tuple<T,N> Contiguous statically sized (with size N) arrays

Table 3. Teuchos array container classes.

base types that is discussed in Section 2.2. Note that the class ArrayView does not support all of the raw

pointer iterator-like operations that ArrayRCP supports like the dereference operator operator*() or the

pointer offset functions that change the pointer. The reason that ArrayRCP does support these iterator-like

operations is so that it can be used as a general purpose iterator implementation while ArrayView objects

do not need to be used in this way. Note that all of the array classes defined in Teuchos all support a basic

iterator interface with the [const] iterator member typedefs and the functions begin() and end(). In

optimized mode, these iterators are simply raw C++ pointers yielding maximum performance. However, in

debug mode, the iterators are implemented as ArrayRCP objects resulting in fully checked iterators.

In addition to the four basic memory management classes shown in Table 1 (which provide the most

fundamental encapsulations for all raw C++ pointers in all high-level code) Teuchos also contains a few

other array container classes for a few more specific use cases shown in Table 3. The array container

classes Array and Tuple pretty much cover the majority of use cases in C++ where raw C++ pointer arrays

are used for containers. The class Array is a direct replacement for std::vector and actually wraps it

internally.

Note that all of these classes are templated on value types and are themselves value-types (see Section 4.1).

This means that one can embed these types in each other in any arbitrary order to create any type of data

structure that one would like. For example, one could have

Array<RCP<ArrayRCP<ArrayView<Tuple<Ptr<T>,5> > > > > >. By understanding what each of these

types provide and what each type means (in terms of the idioms defined in Section 5.8), one can achieve

almost anything in a way that is self documenting.

These classes all work together to provide a high level of debug-mode runtime checking to catch the

majority of common programming errors and report these errors gracefully with informative error

messages. A debug-mode build of the code is facilitated by defining the preprocessor macro

TEUCHOS DEBUG (through the CMake configuration variable Teuchos ENABLE DEBUG=ON). When

TEUCHOS DEBUG is not defined, the Teuchos memory management classes are configured to impart minimal

overhead and yield fast performance. When TEUCHOS DEBUG is defined, these classes are configured to

perform maximal debug runtime checking. These classes are also carefully designed so that if a program is

implemented correctly using these classes and executes correctly in optimized mode, then the program

compiled with the debug checking turned on will execute in exactly the same way. However, if any

undefined, dangerous, or just plain wrong behavior is being used, then these memory management classes

will throw exceptions and the exception objects will have very good error messages embedded in them

making it easier to debug and fix the problems.

What is important to understand is that all of these memory management classes must be developed

together with knowledge of each other’s internal implementations in order to provide solid debug-mode

runtime checking. For example, in general, one cannot mix together different memory management classes

25

like boost::shared ptr (i.e. std::shared ptr in C++0x) and std::vector with the Teuchos memory

management classes at the user level and provide the same high level of runtime checking that is supported

by the complete system of Teuchos memory management classes. More details about why this is so are

given in Section 5.11 in the context of debug-mode runtime checking for and reporting of dangling

references.

As with the development of any set of C++ classes, a set of accompanying idioms must also be developed

for maximizing their effective use. The idioms described in this paper involving the Teuchos memory

management classes result in code with maximum compile-time checking, maximum debug-mode runtime

checking, near optimal perforamnce, and maximally self-documenting.

5.2 The proper role of raw C++ pointers

The main thesis of this paper is that the use of all raw C++ pointers should be fully encapsulated in all

high-level C++ code and instead a system of safe specially designed types tailored to specific use cases

should be used instead. Does that mean that raw C++ pointers should never be used in any C++ code? The

answer of course is no, since raw C++ pointers will always have to be used in some special situations (but

perhaps not directly used as described below).

Given the full use of the Teuchos memory management classes, here are the valid situations where it is

appropriate (or required) to use raw C++ pointers in fully compliant C++ programs:

• Use raw C++ pointers (indirectly) for extremely well-encapsulated, low-level, high-performance

algorithms

In order to achieve high performance in computationally intensive code, one will always have to use

raw C++ pointers (at least indirectly) in a non-debug optimized build. This includes using raw C++

pointers to build specialized data structures and similar purposes. In this context, one can think of

raw C++ pointers as a fairly compact and efficient way to communicate with the compiler about how

one wants to manage memory at the hardware level. The ability to do this type of fine-grained

manipulation of memory has always been one of the strengths of C and C++ in systems-level

programming. Therefore, one can think of using raw pointers in C++ as a kind of portable assembly

language that one always has at one’s disposal on every platform and with every compiler. However,

instead of using raw pointers, one can always use the types Ptr, ArrayView or

ArrayType::iterator (where ArrayType is Array, ArrayRCP, or ArrayView) to yield raw pointer

performance in a non-debug optimized build but still maintain strong debug-mode runtime checking.

This approach is discuss in more detail in Section 5.12.3.

• Use raw C++ pointers to communicate with legacy C++ code and with other languages through C

bindings

The only remaining valid reason to use raw C++ pointers is to reuse and communicate with legacy

C++ code and to call functions in other languages through the now-universal approach of using C

bindings. However, one must endeavor to minimize the amount of C++ code that has naked raw C++

pointers and one should only expose a raw C++ pointer at the last possible moment (such as in the

call to the external functions themselves). Again, one must carefully encapsulate access to

non-compliant code that requires the exposure of raw C++ pointers.

26

Common member functions

T* getRawPtr() [const]

Common nonmember functions

void swap(Type<T>&, Type<T>&)

bool is null(const Type<T>&)

bool nonnull(const Type<T>&)

bool operator==(const Type<T>&, ENull)

bool operator!=(const Type<T>&, ENull)

bool operator==(const Type<T>&, const Type<T>&)

bool operator!=(const Type<T>&, const Type<T>&)

bool operator<(const Type<T>&, const Type<T>&)

bool operator<=(const Type<T>&, const Type<T>&)

bool operator>(const Type<T>&, const Type<T>&)

bool operator>=(const Type<T>&, const Type<T>&)

Table 4. Common members and non-members for Type = Ptr, RCP,

Array ArrayRCP, ArrayView, and Tuple.

One point is worth nothing here which is that in this new modern C++ software one must never use raw

C++ pointers in the basic interfaces between the various modules as that is where a majority of mistakes in

the use of memory will be made. This goes somewhat contrary to the advice in Item 63 “Use sufficiently

portable types in a module’s interface” in [31]. If this new modern safe C++ software must be called by

non-compliant software that uses raw C++ pointers, then one can provide specialized C-like interfaces for

those clients that use raw C++ pointers for communication. Of course, once one does this, one will have to

rely on clients to pass in memory correctly and keep it valid as long as local modules need it.

5.3 Common aspects of all Teuchos memory management classes

Table 4 gives the member and non-member functions common all the Teuchos memory management

classes Ptr, RCP, Array, ArrayView, ArrayRCP, and Tuple. The comparison operators allows all of these

types to be used as keys in associative containers like std::map. The member function getRawPtr() is

actually an incredibly useful function that will return a null pointer (i.e. 0) when the underlying smart

pointer is null (such as with Ptr, RCP, ArrayRCP, and ArrayView) or when the container has size zero

(such as with Array).

5.4 Memory management classes replacing raw pointers for single objects

The templated classes Ptr and RCP described in the next two sections are used to encapsulate raw C++

pointers to single objects. Again, Ptr is used for non-persisting (and semi-persisting) associations and RCP

is used for persisting associations. Below, and in all of the code listings, it is assumed that the code is

enclosed in the Teuchos namespace or there are appropriate using Teuchos::XXX declarations (as is safe

and appropriate) for the various names in place.

27

5.4.1 Teuchos::Ptr<T>

The templated class Ptr is the simplest of all the Teuchos memory management classes. In optimized

mode it is just the thinnest of wrappers around a raw C++ pointer. Listing 14 shows what the

implementation of Ptr looks like in optimized mode:

Listing 14 : Teuchos::Ptr class

template<class T>

class Ptr {

public:

Ptr(ENull null_in = null) : ptr_(0) {}

explicit Ptr(T *ptr) : ptr_(ptr) {}

Ptr(const Ptr<T>& ptr) : ptr_(ptr.ptr_) {}

template<class T2> Ptr(const Ptr<T2>& ptr) : ptr_(ptr.ptr_) {}

Ptr<T>& operator=(const Ptr<T>& ptr) { ptr_=ptr.ptr_; return *this; }

T* operator->() const { return ptr_; }

T& operator*() const { return *ptr_; }

T* getRawPtr() const { return ptr_; }

T* get() const { return ptr_; } // For compatibility with shared_ptr

const Ptr<T>& assert_not_null() const;

private:

T *ptr_;

};

In optimized mode, the only overhead imparted by Ptr is the default initialization to null (0). All other

functions are just inline accessors to the underlying raw C++ pointer member ptr . Therefore, the

performance when using this type is the same as when using a raw C++ pointer.

However, in debug mode (enabled when TEUCHOS DEBUG is defined), the Ptr class becomes more complex

and performs a number of runtime checks like for null dereferences and dangling references (see

Section 5.11.3).

One note about the default null constructor shown in Listing 14 which is:

template<class T>

Ptr<T>::Ptr(ENull null_in = null) : ptr_(0) {}

is that the type ENull is the simple enum in the Teuchos namespace:

enum ENull { null };

This simple enum allows for the safe implicit conversion from the enum value null to any Ptr<T> object.

For example, one can write code like:

Ptr<A> a_ptr = null;

28

This implicit conversion from null is shared by the other Teuchos memory management smart-pointer

classes RCP<T>, ArrayView<T>, and ArrayRCP<T>. This allows calling functions that accept one of these

objects and by just passing in null when appropriate and the implicit conversion will be done

automatically if possible (see Section 5.7.3).

The main purpose for the existence of the Ptr class is to replace raw C++ pointers in function calls for

typical input, input/output, and output arguments where no persisting relationship is present. (the class Ptr

should also be used for semi-persisting associations where single objects are involved.) For example,

consider the function that modifies a type A object shown in Listing 15.

Listing 15 : Simple function using unsafe raw pointer

void modifyA(A *a)

{

assert(a);

a->increment();

}

Using Ptr, the function modifyA(...) in Listing 15 would be changed to the form shown in Listing 16.

Listing 16 : Simple function refactored to use safe Ptr wrapped pointer

void modifyA(const Ptr<A> &a)

{

a->increment();

}

In this context, the primary advantage of the form shown in Listing 16 as apposed to Listing 15 is that in

debug mode, a check for a null pointer or a dangling reference would be performed automatically. If a null

dereference occurred, then an exception would be thrown with a very good error message. I have seen

platforms where a null dereference did not automatically result in a graceful assert, stopping the program. I

have seen cases where somehow memory was corrupted and the program continued! A good philosophy is

to make as few assumptions as possible about undefined behavior of the compiler and platform because I

have found that “typical and obvious” behavior for undefined behavior is not universal. Many have learned

the hard way that one will pay a price for such assumptions in lost time debugging obscure things like a

null pointer dereference that should have stopped the program but did not. Don’t take chances with

undefined behavior in the code, take control!

When all of the high-level code has been converted over to use these memory management classes and

there are no more raw C++ pointers, then client code should never have to construct a Ptr object using a

raw C++ pointer. However, as code is being transitioned over and when such code is called by

non-compliant code, construction from a raw pointer is needed. The recommended way to convert from a

raw C++ pointer to Ptr is to use the following templated non-member function:

Listing 17 : Teuchos::ptr(...)

template<class T> Ptr<T> ptr(T *p);

29

Using this non-member constructor function, client code would then be written as shown in Listing 18.

Listing 18 :

void foo(A* a)

{

using Teuchos::ptr;

modifyA(ptr(a));

}

A more typical use case for the construction of a Ptr object is from a raw C++ object or reference. This

type of construction should always be performed using one of the non-member constructor functions

shown in Listing 19.

Listing 19 : Safe nonmember constructors for Teuchos::Ptr

template<typename T> Ptr<T> ptrFromRef(T& arg);

template<typename T> Ptr<T> inOutArg(T& arg);

template<typename T> Ptr<T> outArg(T& arg);

template<typename T> Ptr<T> optInArg(T& arg);

template<typename T> Ptr<const T> constOptInArg(T& arg);

The different forms of non-member constructor functions shown in Listing 19 are to allow for

self-documenting code for calls to functions that accept Ptr-wrapped objects. A complete and

comprehensive set of idioms for using Ptr along with the other Teuchos memory management types is

given in Section 5.8.

5.4.2 Teuchos::RCP<T>

The class RCP, the real workhorse of the Teuchos memory management classes, is used to manage single

objects in persisting associations. RCP is very similar to other high-quality reference-counted smart pointer

classes like boost::shared ptr and of course the upcoming standard C++0x class std::shared ptr.

However, RCP has some key features that differentiate it from these other better known smart pointer

classes. In particular, RCP has built in support for the detection of circular references (Section 5.9.2), has

built in support for resolving circular references with built-in weak pointers (Section 5.9.1), and other

strong debug runtime checking such as detecting multiple non-related RCP objects owning the same

reference-counted objects (Section 5.11.4) and other types of checks.

Because the class RCP is described in [2] and is so similar in use to boost::shared ptr (described some

in [26]), this class will not be described in too much detail here. However, a fairly complete definition of

the class RCP is shown in Listing 20 (the full listing can be found in the Doxygen documentation).

Listing 20 : Class and helper function listing for RCP

template<class T>

class RCP {

30

public:

// General functions

RCP(ENull null_arg = null);

explicit RCP(T* p, bool has_ownership = false);

template<class Dealloc_T> RCP(T* p, Dealloc_T dealloc, bool has_ownership);

RCP(const RCP<T>& r_ptr);

template<class T2> RCP(const RCP<T2>& r_ptr);

˜RCP();

RCP<T>& operator=(const RCP<T>& r_ptr);

bool is_null() const;

T* operator->() const;

T& operator*() const;

T* getRawPtr() const;

Ptr<T> ptr() const;

// Other shared_ptr compariblity functions

...

// Reference counting member functions

...

private:

T *ptr_;

RCPNodeHandle node_;

...

};

// General non-member constructor functions

template<class T> RCP<T> rcp(T* p, bool owns_mem = true);

template<class T> RCP<T> rcpFromRef(T& r);

template<class T> RCP<T> rcpFromUndefRef(T& r);

// Deallocation policy functions

...

// Embedded objects functions

...

// Extra data functions

...

// Conversion functions

...

// Other common non-member functions

...

Again, basic usage of the RCP class is described in [2] and the functions for decallocation policies,

embedded objects, extra data, conversion functions and other functions are discussed in other sections in a

more general setting. The basic idioms for smart pointers and reference counting are fairly well known, are

well documented in the literature, and there is a good overview in [2] so basic information will not be

31

replicated here. However, some of the more advanced functionality for RCP that is not described in [2] or an

any of the existing C++ literature is described in later sections of this document.

5.4.3 Raw C++ references

Why is there a subsection on raw C++ references under the a section describing Teuchos Memory

Management classes for single objects? The reason is that raw C++ references to single objects are used in

the idioms described in this paper for non-persisting associations for single objects and this was a

reasonable place to discuss issues with raw C++ references.

While this paper argues that raw C++ pointers have no place in application-level code because they are

fundamentally unsafe, are C++ references also not inherently unsafe as well? After all, under the covers

raw C++ references really are just raw C++ pointers in disguise. While this is true, in practice raw C++

references are significantly safer than raw C++ pointers, especially if the idioms outlined in this paper are

carefully followed. In addition, the use of raw C++ references is exploited (as explained in Section 5.4.3)

in defining idioms that increase the self-documenting nature of C++ code and play a role in defining

non-persisting associations related to function formal arguments and return objects. All in all, the increased

expressiveness in using raw C++ references is worth the increased risk of misuse (this is still going to be

C++ after all).

Basically, a raw C++ reference is relatively safe as long as a) it is always initialized to point to a valid

object, and b) it is only used for non-persisting relationships (e.g. as const input arguments in C++

functions). If a raw C++ reference is initialized directly from an object or from dereferencing a smart

pointer, then it is guaranteed that the object will be valid when the reference is first created (at least in a

debug build where dereferencing null smart pointers throws). While raw C++ references are fairly safe

when used with the idioms described in this paper, there are no 100% guarantees. There are typically no

guarantees that the object pointed to by a raw reference will stay valid (because dangling references cannot

be detected as described in Section 5.11.6). This can happen when one breaks one or more of the idioms or

guidelines defined in this paper (which will happen because programmers make mistakes).

Note that raw C++ references should never be used for representing semi-persisting associations because it

is impossible to catch invalid usage like dangling references. Instead, when a semi-persisting association is

involved, always use Ptr instead of a raw C++ reference (even if the object being represented is not allowed

to be null). Semi-persisting associations are described in more detail in Section 4.2 and Section 5.12.3.

5.5 Memory management classes replacing raw pointers for arrays of objects

The Teuchos memory management module actually defines four different C++ classes for dealing with

contiguous arrays of objects: ArrayView, ArrayRCP, Array, and Tuple. As stated in Section 5.1 each of

these classes is needed in order to address different important use cases for dealing with contiguous arrays

of objects. The conventions outlined in the paper never have high-level code exposing a raw C++ pointer to

an array or directly using built-in (statically sized) C++ arrays.

In addition to the common members shown in Table 4, all of the Teuchos array classes provide a common

subset of the interface of std::vector which includes the typedefs and member functions shown in

Table 5.

32

std::vector compatible member typedefs

value type

size type

difference type

pointer

const pointer

reference

const reference

iterator

const iterator

element type

std::vector compatible member functions

size type size()

[const]reference operator(size type) [const]

[const]reference front() const

[const]reference back() const

[const]iterator begin() [const]

[const]iterator end() [const]

ArrayView returning member functions

ArrayView<[const] T> view(size type offset, size type size) [const]

ArrayView<[const] T> operator[]()(size type offset, size type size) [const]

ArrayView<[const] T> operator()() [const]

Additional common member functions

[const]pointer getRawPtr() [const]

std::string toString() const

Table 5. Additional common members and non-members for

ArrayView, ArrayRCP, Array, and Tuple .

33

A few things to note about the common array interface components shown in Table 5 include:

• All of the Teuchos array classes are drop-in replacements for any code that uses std::vector that

does not grow or shrink the container by supporting the necessary typedefs, query functions, element

access, and iterator access. This helps in migrating current code that uses std::vector but should

be using Array, ArrayView, ArrayRCP or Tuple.

• All of the array classes support returning ArrayView subviews of contiguous ranges of elements.

• All of the array classes support a handy getRawPtr() function that allows a client to get the base

pointer address to the array or null. The standard std::vector class supports no such function

which is very painful for users since it makes it hard to get a null pointer then the container can

legitimately be unsized in some use cases.

The exact functions shown in Table 5 for ArrayView and ArrayRCP are a little different than for Array due

to the different nature of these view classes as apposed to the container class Array. As described in

Section 5.6, the classes ArrayView and ArrayRCP can encapsulate both non-const and const types T as

their template argument while Array can only accept a non-const type T. Therefore, the std::vector

compatible functions in ArrayView and ArrayRCP are all const functions since they don’t change what

data these objects point to, but only change the data itself.

One other aspect to note about the Teuchos array classes is that they deviate from the standard C++ library

convention of using an unsigned integer for size type. Instead, they use a signed integer for size type

typedefed to the signed type Teuchos Ordinal which is guaranteed to be 32 bit on a 32 bit machine and

64 bit on a 64 bit machine7. The reasoning for breaking from the std::vector standard for size type is

described in Appendix C.

5.5.1 Teuchos::ArrayView<T>

The class ArrayView, the simplest of the Teuchos array memory management classes, is designed to

encapsulate raw pointers in non-persisting associations primarily for formal function array arguments.

(ArrayView is to be used for semi-persisting associations as well.) In an optimized build, an ArrayView

object simply holds a raw base array pointer and an integer size. In an optimized build, ArrayView looks

like Listing 21.

Listing 21 : Teuchos::ArrayView declaration (See Table 5 for common array members.)

template<class T>

class ArrayView {

public:

// Constructors/Assignment/Destructors

ArrayView(ENull null_arg = null);

7Teuchos Ordinal is typedefed by default to the standard C library type ptrdiff t which is always signed and is 32 bit on a

32 bit machine and 64 bit on a 64 bit machine.

34

ArrayView(T* p, size_type size);

ArrayView(const ArrayView<T>& array);

ArrayView(std::vector<typename ConstTypeTraits<T>::NonConstType>& vec);

ArrayView(const std::vector<typename ConstTypeTraits<T>::NonConstType>& vec);

ArrayView<T>& operator=(const ArrayView<T>& array);

˜ArrayView();

// Implicit conversion to const

operator ArrayView<const T>() const;

// Deep copy

void assign(const ArrayView<const T>& array) const;

// Common array class members and other functions

...

private:

T *ptr_; // Optimized implementation

size_type size_;

};

// Non-member helpers

template<class T>

ArrayView<T> arrayView(T* p, typename ArrayView<T>::size_type size);

template<class T>

ArrayView<T> arrayViewFromVector(std::vector<T>& vec);

template<class T>

ArrayView<const T> arrayViewFromVector(const std::vector<T>& vec);

template<class T>

std::vector<T> createVector(const ArrayView<T> &av);

template<class T>

std::vector<T> createVector(const ArrayView<const T> &av);

// Other common non-member helpers

...

// Explicit conversion functions

...

A few specific things to note about ArrayView shown in Listing 21 in addition to the comments in

Section 5.5 and other sections include:

• ArrayView is extremely lightweight in an optimized build, carrying only a pointer and an integer

size. This allows one to replace the typical pointer and separate size argument with a single

aggregate light-weight object. Therefore, it yields very efficient code.

35

• ArrayView in optimized mode has all trivial inlined functions that work with the raw pointer so it is

as efficient as raw pointer code (Section 5.12.2).

• ArrayView is a drop in replacement for any code that uses std::vector that does not grow or

shrink the container by supporting the necessary typedefs, query functions, and iterator access. This

helps in migrating current code that uses std::vector but should be using ArrayView.

• ArrayView implicitly converts from an std::vector so functions called by existing client code that

uses std::vector can be safely and transparently refactored to use ArrayView instead of

std::vector (subject to the limitations for implicit conversions described in Section 5.7.3).

• ArrayView directly supports the creation of subviews of contiguous ranges of elements.

What makes ArrayView non-trivial and special, however, is that in a debug build, the implementation takes

on a variety of runtime checking to catch all sorts of errors such as dangling iterators, dangling sub-views

(Section 5.11.3), range checking (Section 5.11.1), and other types of runtime checking.

It should be noted that one should almost never create an ArrayView object directly from a raw pointer but

instead create them as views of Array, ArrayRCP, Tuple and other ArrayView objects. If client code is

routinely creating ArrayView objects from raw pointers, then the code is not safe and one needs to study

the core idioms described in Section 5.8.

The class ArrayView has no equivalent in boost or the current C++ or proposed C++0x standard. This is a

critical class needed to allow for flexibility, high-performance, safety, and maximaly self-documenting

code. One cannot develop an effective type system without an integrated type like ArrayView.

5.5.2 Teuchos::ArrayRCP<T>

The class ArrayRCP is the counterpart to ArrayView for general flexible array views except it is used for

persisting relationships where reference-counting machinery is required. An ArrayRCP object can provide

a contiguous view into any array of data allocated in anyway possible and can allow the user to define what

is done to release memory in anyway they would like.

The class declaration for Teuchos::ArrayRCP is shown in Listing 22.

Listing 22 : Teuchos::ArrayRCP declaration (optimized build)

template<class T>

class ArrayRCP {

public:

// Constructors/initializers

ArrayRCP(ENull null_arg=null);

ArrayRCP(T* p, size_type lowerOffset, size_type upperOffset,

bool has_ownership);

template<class Dealloc_T>

ArrayRCP(T* p, size_type lowerOffset, size_type upperOffset,

Dealloc_T dealloc, bool has_ownership);

explicit ArrayRCP(size_type lowerOffset, const T& val = T());

36

ArrayRCP(const ArrayRCP<T>& r_ptr);

˜ArrayRCP();

ArrayRCP<T>& operator=(const ArrayRCP<T>& r_ptr);

// Object/Pointer Access Functions

T* operator->() const;

T& operator*() const;

ArrayRCP<T>& operator++();

ArrayRCP<T> operator++(int);

ArrayRCP<T>& operator--();

ArrayRCP<T> operator--(int);

ArrayRCP<T>& operator+=(size_type offset);

ArrayRCP<T>& operator-=(size_type offset);

ArrayRCP<T> operator+(size_type offset) const;

ArrayRCP<T> operator-(size_type offset) const;

// ArrayRCP Views

ArrayRCP<const T> getConst() const;

ArrayRCP<T> persistingView(size_type lowerOffset, size_type size) const;

// Implicit conversions

operator ArrayRCP<const T>() const;

// Explicit ArrayView

ArrayView<T> operator()() const;

// Size and extent query functions

size_type lowerOffset() const;

size_type upperOffset() const;

size_type size() const;

// std::vector like and other misc functions

void assign(size_type n, const T &val);

template<class Iter>

void assign(Iter first, Iter last);

void deepCopy(const ArrayView<const T>& av);

void resize(const size_type n, const T &val = T());

void clear();

// Common array class members (see above)

...

// Reference counting (same as for RCP)

...

private:

T *ptr_; // NULL if this pointer is null

RCPNodeHandle node_; // NULL if this pointer is null

size_type lowerOffset_; // 0 if this pointer is null

size_type upperOffset_; // -1 if this pointer is null

};

// Nonmember constructors

37

template<class T>

ArrayRCP<T> arcp(T* p, typename ArrayRCP<T>::size_type lowerOffset,

typename ArrayRCP<T>::size_type size, bool owns_mem = true);

template<class T, class Dealloc_T>

ArrayRCP<T> arcp(T* p, typename ArrayRCP<T>::size_type lowerOffset,

typename ArrayRCP<T>::size_type size, Dealloc_T dealloc, bool owns_mem);

template<class T>

ArrayRCP<T> arcp(typename ArrayRCP<T>::size_type size);

template<class T>

ArrayRCP<T> arcpClone(const ArrayView<const T> &v);

template<class T>

ArrayRCP<T> arcp(const RCP<std::vector<T> > &v);

template<class T>

ArrayRCP<const T> arcp(const RCP<const std::vector<T> > &v);

template<class T>

ArrayRCP<T> arcpFromArrayView(const ArrayView<T> &av);

template<class T>

RCP<std::vector<T> > get_std_vector(const ArrayRCP<T> &ptr);

template<class T>

RCP<const std::vector<T> > get_std_vector(const ArrayRCP<const T> &ptr);

// Customized deallocators

...

// Embedded object functions

...

// Extra data functions

...

// Conversion functions

...

// Common non-member functions

...

// Other nonmember functions

template<class T>

typename ArrayRCP<T>::difference_type

operator-(const ArrayRCP<T> &p1, const ArrayRCP<T> &p2);

template<class T>

std::ostream& operator<<(std::ostream& out, const ArrayRCP<T>& p);

38

Some of the main features of the ArrayRCP class are:

ArrayRCP allows the user to allocate the contiguous array of data in anyway they would like and can define

how that array is deallocated anyway they would like.

ArrayRCP returns persisting subviews of data through the member function persistingView(...). This

means that the underlying array of data will not be deleted until all the persisting subviews are destroyed.

ArrayRCP is a full replacement for a general raw pointer and can be used as a general iterator that always

remembers the allowed upper and lower bounds. It supports all the appropriate pointer array-like

operations including ptr+i, i+ptr, ptr-i, ptr+=i, ptr-=i, , ptr++, ptr--, *ptr, ptr->member(), and

of course ptr[i]. This is what allows ArrayRCP to be used as a checked iterator implementation in a

debug-mode build.

ArrayRCP can be used safely as a contiguous array by using it through its const interface which disables

all of the pointer-like functions that change the frame of reference (e.g. ptr+=i, ptr-=i, , ptr++, and

ptr-- are disabled in the const interface).

ArrayRCP can be used in place of std::vector (and therefore Array) that only needs to size or resize the

array in baulk and does not need to flexibly grow or shrink the array. It does this by supporting functions

like assign(...), resize(...), and clear(). Because of the reference counting machinery that is

always part of ArrayRCP and support for all raw C++ pointer functionality (e.g., ptr++), one may not want

to use ArrayRCP instead of Array in many types of code. However, if the overhead is not going to be

significant, then going with ArrayRCP instead of Array can be a good choice because it is much more

flexible in how memory is allocated and has built-in support for shared ownership (again, which may not be

needed). The class ArrayRCP does not attempt to replace Array but can be a better choice in many cases

where an Array may otherwise be used.

ArrayRCP supports explicit shallow conversion to ArrayView. Requiring an explicit conversion from

ArrayRCP to ArrayView in consistent with the required explicit conversion from RCP to Ptr. As explained

in Section 5.8.4, requiring this type of explicit conversion is meant to increase the type safety and

self-documenting nature of all code (including the calling code as well). Note that the

ArrayRCP::operator()() function is a very short-hand way to perform conversion to ArrayView.

ArrayRCP supports owning conversions from RCP-wrapped Array and std::vector objects. This allows

for better interoperability between code and uses solid reference-counting ownership semantics.

Some of the other features of the ArrayRCP class that are common with the other classes are discussed in

Section 5.7, Section 5.9, and Section 5.11.

5.5.3 Teuchos::Array<T>

The class Array is a complete drop-in replacement for std::vector that is integrated with the ArrayView

class for debug-mode runtime checking. In an optimized build, Array is nothing but an inline wrapper

around a fully encapsulated std::vector object. This means that in an optimized build, Array takes

advantage of all of the platform-specific optimizations contained in the native std::vector

implementation and imparts no extra space/time overhead (see the timing results in Section 5.12.2 for

evidence of this claim). However, in a debug build, a full set of platform-independent runtime checking is

performed that is as strong or stronger than any checked STL implementation (see [31, Item 83]) and in

39

addition includes dangling reference detection of ArrayView views or direct conversions to ArrayRCP

objects (see Section 5.11.3). Array also supports better runtime debug output with better exception error

messages.

The class declaration for the Array class is shown in Listing 23.

Listing 23 : Teuchos::Array declaration (optimized build)

template<typename T>

class Array {

public:

// Constructors/initializers

Array();

explicit Array(size_type n, const value_type& value = value_type());

Array(const Array<T>& x);

template<ypename InputIterator> Array(InputIterator first, InputIterator last);

Array(const ArrayView<const T>& a);

template<int N> Array(const Tuple<T,N>& t);

˜Array();

Array& operator=(const Array<T>& a);

// Other std::vector functions

void assign(size_type n, const value_type& val);

template<typename InputIterator> void assign(InputIterator first,

InputIterator last);

iterator begin();

iterator end();

const_iterator begin() const;

const_iterator end() const;

reverse_iterator rbegin();

reverse_iterator rend();

const_reverse_iterator rbegin() const;

const_reverse_iterator rend() const;

size_type size() const;

size_type max_size() const;

void resize(size_type new_size, const value_type& x = value_type());

size_type capacity() const;

bool empty() const;

void reserve(size_type n);

reference operator[](size_type i);

const_reference operator[](size_type i) const;

reference at(size_type i);

const_reference at(size_type i) const;

reference front();

const_reference front() const;

reference back();

const_reference back() const;

void push_back(const value_type& x);

void pop_back();

iterator insert(iterator position, const value_type& x);

void insert(iterator position, size_type n, const value_type& x);

template<typename InputIterator> void insert(iterator position,

40

InputIterator first, InputIterator last);

iterator erase(iterator position);

iterator erase(iterator first, iterator last);

void swap(Array& x);

void clear();

// Conversions to and from std::vector

Array(const std::vector<T> &v);

std::vector<T> toVector() const;

Array& operator=(const std::vector<T> &v);

// Implicit conversion to ArrayView

operator ArrayView<T>();

operator ArrayView<const T>() const;

// Common array class members (see above)

...

private:

std::vector<T> vec_; // Optimized implementation

};

// Non-member helper functions

template<class T> ArrayRCP<T> arcp(const RCP<Array<T> > &v);

template<class T> ArrayRCP<const T> arcp(const RCP<const Array<T> > &v);

template<class T> ArrayRCP<T> arcpFromArray(Array<T> &a);

template<class T> ArrayRCP<const T> arcpFromArray(const Array<T> &a);

template<typename T> std::ostream& operator<<(std::ostream& os,

const Array<T>& array);

template<typename T> std::vector<T> createVector(const Array<T> &a);

std::string toString(const Array<T>& array);

template<typename T> Array<T> fromStringToArray(const std::string& arrayStr);

// Other common nonmember functions

...

The usage of the Array class is identical to the usage of std::vector except that it naively supports the

creation of AraryView objects that can detect and report dangling references or attempts to resize the

container when one or more ArrayView objects are active. The unit tests for Array provide a complete

catalog of all the debug-mode runtime checking that Array performs. A more general discussion of

debug-mode runtime checking can be found in Section 5.11.

5.5.4 Teuchos::Tuple<T,N>

The last array class discussed here is the Tuple class which represents a compile-time sized array that

implicitly converts into an ArrayView object. The class listing for Tuple is shown in Listing 24.

Listing 24 : Teuchos::Tuple declaration (optimized build)

template<typename T, int N>

41

class Tuple {

public:

// Constructors/initializers

inline Tuple();

Tuple(const Tuple<T,N> &t);

// Implicit conversion to ArrayView

operator ArrayView<T>();

operator ArrayView<const T>() const;

// Common array class members (see above)

...

private:

T array_[N]; // Optimized implementation

};

// Non-member constructors

template<typename T>

Tuple<T,1> tuple(const T& a);

template<typename T>

Tuple<T,2> tuple(const T& a, const T& b);

template<typename T>

Tuple<T,3> tuple(const T& a, const T& b, const T& c);

...

template<typename T>

Tuple<T,15> tuple(const T& a, const T& b, const T& c, const T& d, const T& e,

const T& f, const T& g, const T& h, const T& i, const T& j, const T& k,

const T& l, const T& m, const T& n, const T& o);

The class Tuple is very small and efficient in an optimized build. All the functions are inlined and all data

is allocated on the stack (or statically) and does not use the free store. In an debug build, however, Tuple

takes on all the debug checking of all the other Teuchos array classes including the detection of dangling

ArrayView views and dangling iterators.

One of the most useful features of Tuple is that a number of overloaded non-member constructor functions

with name tuple(...) are provided (show above) to make it easy to pass in arrays to functions that accept

them as ArrayView arguments. Overloads of tuple(...) are currently provided from one up through 15

arguments. For an example for using tuple(...) to call a function call, consider the function to be called:

void doSomething(const ArrayView<const int>&);

To call the function with three int arguments, one would use:

doSomething(tuple<int>(1, 2, 3)); // Implicitly converts to ArrayView<int>

42

Note that in an optimized build for the above function call that all data would be allocated on the stack and

would not involve the free store. This results in very efficient code which is important when this is being

used in an inner loop.

5.5.5 Array views

One of the most powerful features of the Teuchos memory management array types is that they allow for

the creation of arbitrary contiguous subviews of data that have the strongest debug-mode runtime checking

possible. All of the array classes ArrayView, ArrayRCP, Array, and Tuple provide contiguous views as

ArrayView objects. The functions that provide ArrayView views are shown in Table 5. The ArrayRCP

class can also provide persisting contiguous subviews as new ArrayRCP objects using the function

ArrayRCP::persistingView(...). Persisting views will remain even if the parent ArrayRCP objects

have been released.

As soon as a contiguous array of data is correctly captured in Array or an owning ArrayRCP object, all

children ArrayView objects will be protected in that if the parent array gets deleted, a debug-mode runtime

check will detect and report a dangling reference if a client tries to access the data after the parent has gone

away (see Section 5.11.3 for details).

To demonstrate the elegance and superior error checking of ArrayView subviews, consider a refactored

version of code in Listing 4 and Listing 5 that tried to use std::vector but resulted in verbose clumsy

code that was really no more correct or safe than the raw C++ pointer version. This refactored version to

use ArrayView is shown in Listing 25 and Listing 26.

Listing 25 : Refactored version of Listing 4 to use ArrayView

template<class T>

class BlockTransformerBase {

public:

virtual ˜BlockTransformerBase();

virtual void transform(const ArrayView<const T> &a, const ArrayView<T> &b) const = 0;

};

template<class T>

class AddIntoTransformer : public BlockTransformerBase<T> {

public:

virtual void transform(const ArrayView<const T> &a, const ArrayView<T> &b) const

{

DEBUG_MODE_ASSERT_EQUALITY(a.size(), b.size());

for (int i = 0; i < a.size(); ++i)

b[i] += a[i];

}

};

Listing 26 : Refactored version of Listing 5 to use ArrayView

void someBlockAlgo(const BlockTransformerBase &transfomer,

const int numBlocks, const ArrayView<const double> &big_a,

const ArrayView<double> &big_b)

43

{

DEBUG_MODE_ASSERT_EQUALITY(big_a.size(), big_b.size());

const int totalLen = big_a.size();

const int blockSize = totalLen/numBlocks; // Assume no remainder!

const int blockOffset = 0;

for (int block_k = 0; block_k < numBlocks; ++block_k, blockOffset += blockSize)

{

if (big_a[blockOffset] > 0.0) {

transformer.transform(big_a(blockOffset, blockSize),

big_b(blockOffset, blockSize));

}

}

}

The advantages of the refactored code in Listing 25 and Listing 26 are that they are nearly as compact as

the raw pointer versions in Listing 3 and Listing 6 but in addition also have full debug-mode runtime error

checking. To see the improved safety, let’s consider the case where the transform(...) function is

incorrectly implemented with an off-by-one error as shown in Listing 27.

Listing 27 : Refactored version of off-by-one error in Listing 7 to use ArrayView

template<class T>

void AddIntoTransformer<T>::transform(const ArrayView<const T> &a, const ArrayView<T> &b)

{

DEBUG_MODE_ASSERT_EQUALITY(a.size(), b.size());

for (int i = 0; i <= a.size(); ++i)

b[i] += a[i]; // Throws when i == a.size()

}

If the erroneous transform(...) function in Listing 27 were called from Listing 26 then in debug-mode,

a runtime exception would immediately be raised when the transform(...) function tried to access one

past the last element. As mentioned in Section 3.2, memory checking tools like Valgrind or Purify will

never be able to catch semantic usage errors like this but it is trivial to catch these mistakes when using the

Teuchos memory management classes.

As mentioned in Section 5.7, subviews can also be used along with the reinterpret cast functions to create

very efficient memory management schemes for POD (plain old data) where large untyped char arrays are

created and then subviews are broken off and reinterpret cast to specific data types. Examples of this can be

found in the unit testing code.

5.6 Const versus non-const pointers and objects

The core smart-pointer pointer classes Ptr, RCP, ArrayView and ArrayRCP allow for the inner object (or

array of objects) to be const or non-const and for the outer pointer object to be const or non-const, just like

with regular C++ pointers. To draw the analogy with raw pointers, consider the equivalent declarations of a

raw pointer and the pointer encapsulation class in Table 6.

44

Equivalencies for const protection for raw pointers and Teuchos smart pointers types

Description Raw pointer Smart pointer

Basic declaration (non-const obj) typedef A* ptr A RCP<A>

Basic declaration (const obj) typedef const A* ptr const A RCP<const A>

non-const pointer, non-const object ptr A RCP<A>

const pointer, non-const object const ptr A const RCP<A>

non-const pointer, const object ptr const A RCP<const A>

const pointer, const object const ptr const A const RCP<const A>

Table 6. Equivalences between raw pointer and smart pointer types

for const protection. Here, RCP is a stand-in for all four types Ptr, RCP,

ArrayView and ArrayRCP.

The majority of problems that beginners have with the Teuchos memory management classes is related to

the inability to make the basic equivalencies between raw pointers and smart pointers shown in Table 6 (see

Section 5.7.3 for specific examples). It is critical that the programmer recognize this equivalence with raw

pointers because it impacts many things especially implicit type conversions to satisfy function calls

(again, see Section 5.7).

5.7 Conversions

Type conversions exist both for a single smart pointer type for the embedded type argument (e.g.

RCP<Derived> implicitly converts to RCP<const Derived>, RCP<Base>, and RCP<const Base>) and

also between different smart pointer types (e.g. Array implicitly converts to ArrayView). There are

implicit conversions and explicit conversions. These two types of conversions are depicted in Figures 2

and 3 and shown in more detail in more detail in Table 8 and Table 9. (Note: All of the conversions shown

in Table 8 and Table 9 are not shown in Figure 2 and Figure 3 for the sake of not making the figures to

complex.) These conversions are described in the following two sections.

5.7.1 Implicit and explicit raw-pointer-like conversions

The core Teuchos memory management smart pointer types Ptr, RCP, ArrayView and ArrayRCP support

all of the reasonable implicit and explicit type conversions that are defined by raw C++ pointers. C++

defines implicit conversions for raw pointers from non-const to const and from derived to base types.

Table 7 shows what implicit and explicit conversions are supported for the four core memory management

smart pointer types.

As seen in Table 7, the smart pointer types for single objects Ptr and RCP do not support the same implicit

and explicit conversions that are supported for the array smart pointer types ArrayView and ArrayRCP. As

explained in Section 2.2, it almost always incorrect and dangerous to allow implicit conversions from

derived to base type for pointers that point into contiguous arrays of objects. Therefore, the types

ArrayView and ArrayRCP do not support implicit conversions from derived to base types. Due to similar

logic, it almost never makes any sense to perform a static cast or a dynamic cast on a pointer to an array of

45

Figure 2. Conversions between different single-object memory man-

agement types.

Basic implicit and explicit supported conversions for Teuchos smart pointer types

Operation Ptr<T> RCP<T> ArrayView<T> ArrayRCP<T>

Implicit conv derived to base x x

Implicit conv non-const to const x x x x

const cast x x x x

static cast x x

dynamic cast x x

reinterpret cast x x

Table 7. Basic implicit and explicit conversions by smart-pointer types.

46

Figure 3. Conversions between array memory management types.

47

contiguous objects so the types ArrayView and ArrayRCP do not support static and dynamic casts.

In well formed programs, there is a justification to perform reinterpret casts for contiguous arrays of POD

(plain old data) types. It is perfectly reasonable to allocate a large array of char (untyped) data and then

create subviews and reinterpret cast to separate arrays of double and int data, for instance. However, in a

well formed program in high-level code there is not a single valid reason to perform a reinterpret cast for

single objects and therefore reinterpret cast is not supported for the types Ptr and RCP.

The allowed implicit conversions for Ptr and RCP are implemented through templated copy constructors

(see Section 5.4.1 and Section 5.4.2). However, the only allowed implicit conversion for <T*> to <const

T*> for ArrayView and ArrayRCP are instead supported through conversion member functions (see

Section 5.5.1 and Section 5.5.2). The supported explicit conversion operators for these four types are

shown in the Listings 28, 29, 30, and 31.

Listing 28 : Conversion functions for Ptr

template<class T2, class T1> Ptr<T2> ptr_implicit_cast(const Ptr<T1>& p1);

template<class T2, class T1> Ptr<T2> ptr_static_cast(const Ptr<T1>& p1);

template<class T2, class T1> Ptr<T2> ptr_const_cast(const Ptr<T1>& p1);

template<class T2, class T1> Ptr<T2> ptr_dynamic_cast(const Ptr<T1>& p1,

bool throw_on_fail = false);

Listing 29 : Conversion functions for RCP

template<class T2, class T1> RCP<T2> rcp_implicit_cast(const RCP<T1>& p1);

template<class T2, class T1> RCP<T2> rcp_static_cast(const RCP<T1>& p1);

template<class T2, class T1> RCP<T2> rcp_const_cast(const RCP<T1>& p1);

template<class T2, class T1> RCP<T2> rcp_dynamic_cast(const RCP<T1>& p1,

bool throw_on_fail = false);

Listing 30 : Conversion functions for ArrayView

template<class T2, class T1> ArrayView<T2> av_const_cast(const ArrayView<T1>& p1);

template<class T2, class T1> ArrayView<T2> av_reinterpret_cast(const ArrayView<T1>& p1);

Listing 31 : Conversion functions for ArrayRCP

template<class T2, class T1> ArrayRCP<T2> arcp_const_cast(const ArrayRCP<T1>& p1);

template<class T2, class T1> ArrayRCP<T2> arcp_reinterpret_cast(const ArrayRCP<T1>& p1);

template<class T2, class T1> ArrayRCP<T2> arcp_reinterpret_cast_nonpod(

const ArrayRCP<T1>& p1, const T2& val = T2());

These conversion functions are used very similarly as for the built-in conversion operations in that only the

output type needs to be explicitly specified. For example, Listing 32 shows some example conversions

involving RCP (but the conversion function usage for the other types are identical). One function worth

noting in Listing 31 is arcp reinterpret cast nonpod(...) which performs a reinterpret cast from a

POD (plain old data) datatype (e.g. char) to a non-POD datatype (e.g. std::vector<int>). This function

calls (copy) constructors on the array elements and defines a specialized deallocation policy to call

destructors on the elements when the last ArrayRCP<T2> object is released.

48

Listing 32 : Example usage of the explicit conversion functions

RCP<const Base> = cbase(new Derived);

RCP<Base> base = rcp_const_cast<Base>(cbase);

RCP<const Derived> cderived = rcp_dynamic_cast<const Derived>(cbase, true);

RCP<const Derived> cderived2 = rcp_static_cast<const Derived>(cbase);

// NOTE: Static casting of Base to Derived is not safe when

// using virtual base classes or multiple inheritance. Only dynamic

// casting is always safe with polymophpic types.

Note that the dynamic cast conversion functions ptr dynamic cast() and rcp dynamic cast() both

take an option extra argument throw on fail that if set to true will result in an exception being thrown

on a dynamic cast failure which is embedded with a very helpful error message (accessed through the

std::exception::what() function).

5.7.2 Conversions between different memory management types

It is critical that all conversions between the various Teuchos memory management classes be performed

using conversion code provided by the memory management classes or by associated helper functions in

the Teuchos library. Client code should never convert between memory management types by exposing a

raw C++ pointer. As soon as a raw C++ pointer is exposed, nearly all of the debug-mode runtime checking

will be disabled. If a raw C++ pointer is exposed in order to perform a needed valid conversion, then either

the programmer overlooked an already provided conversion function or the function needs to be added to

Teuchos (please contact the developers of Teuchos at teuchos-users@software.sandia.gov).

Figures 2 and 3 show many of the types of conversions that are supported between the different memory

management types. Specific conversions are shown in more detail in Tables 8 and 9. (Note: All of the

conversions shown in Tables 8 and 9 are not shown in Figures 2 and 3 for the sake of not making the

figures to complex.) For single objects, the conversions between different RCP and Ptr objects of various

kinds shown in Figure 2 and Table 8 include both implicit and explicit conversions (but do not show the

explicit conversion functions already shown in Listings 28 and 29). Conversions between different array

types shown in Figure 3 and Table 9 include both implicit and explicit conversions and view and copy

conversions yielding various types of conversions (but do not show the explicit conversion functions

already shown in Listings 30 and 31).

The conversions shown in Tables 8 and 9 (and also in Listings 28, 29, 30, and 31) are the most basic

conversions supported by the Teuchos memory management types but are not the only supported

conversions. The see the full set of type conversions supported, consult the Doxygen generated

documentation8 . Note that full debug-mode runtime checking is fully enabled for every conversion

between Teuchos memory management types, including full dangling-reference detection and reporting

when creating non-reference-counting types Ptr and ArrayView. In general, dangling references cannot be

detected when converting from raw C++ pointers T* and raw C++ references T& or for shallow views

involving std::vector. However, there are a few special cases where non-owning Ptr, RCP, and

ArrayView, ArrayRCP objects created from raw C++ pointers (or references) will be able to detect

dangling references through the sophisticated debug-mode node tracing system (see Sections 5.11.3 and

5.11.6 for details).

8http://trilinos.sandia.gov/packages/teuchos

49

Most Common Basic Conversions for Single Object Types
Type To Type From Properties C++ code

RCP<A> A* Ex, Ow rcp(a p) 1

RCP<A> A* Ex, NOw rcp(a p,false) 2

RCP<A> A& Ex, NOw rcpFromRef(a)

RCP<A> A& Ex, NOw rcpFromUndefRef(a)

RCP<A> Ptr<A> Ex, NOw, DR rcpFromPtr(a)

RCP<A> boost::shared ptr<A> Ex, Ow, DR rcp(a sp)

RCP<const A> RCP<A> Im, Ow, DR RCP<const A>(a rcp)

RCP<Base> RCP<Derived> Im, Ow, DR RCP<Base>(derived rcp)

RCP<const Base> RCP<Derived> Im, Ow, DR RCP<const Base>(derived rcp)

boost::shared ptr<A> RCP<A> Ex, Ow, DR shared pointer(a rcp)

A* RCP<A> Ex, NOw a rcp.getRawPtr() 3

A& RCP<A> Ex, NOw *a rcp 4

Ptr<A> A* Ex, NOw ptr(a p) 2

Ptr<A> A& Ex, NOw outArg(a) 5

Ptr<A> RCP<A> Ex, NOw, DR a rcp.ptr()

Ptr<A> RCP<A> Ex, NOw, DR a rcp()

Ptr<A> RCP<A> Ex, NOw, DR ptrFromRCP(a rcp)

Ptr<const A> Ptr<A> Im, NOw, DR Ptr<const A>(a ptr)

Ptr<Base> Ptr<Derived> Im, NOw, DR Ptr<Base>(derived ptr)

Ptr<const Base> Ptr<Derived> Im, NOw, DR Ptr<const Base>(derived ptr)

A* Ptr<A> Ex, NOw a ptr.getRawPtr() 3

A& Ptr<A> Ex, NOw *a ptr() 4

A* A& Ex, NOw &a 3

A& A* Ex, NOw *a p 3

Types/identifiers: A* a p; A& a; Ptr<A> a ptr; RCP<A> a rcp; boost::shared ptr<A> a sp;

Properties: Im = Implicit conversion, Ex = Explicit conversion, Ow = Owning, NOw = Non-Owning, DR = Dangling

Reference debug-mode runtime detection (NOTE: All conversions are shallow conversions, i.e. copies pointers not

objects.)

1. Constructing an owning RCP from a raw C++ pointer is strictly necessary but must be done with great care

according to the commandments in Appendix B.

2. Constructing a non-owning RCP or Ptr directly from a raw C++ pointer should never be needed in fully com-

pliant code. However, when inter-operating with non-compliant code (or code in an intermediate state of

refactoring) this type of conversion will be needed.

3. Exposing a raw C++ pointer and raw pointer manipulation should never be necessary in compliant code but

may be necessary when inter-operating with external code (see Section 5.2).

4. Exposing a raw C++ reference will be common in compliant code but should only be used for non-persisting

associations.

5. See other helper constructors for passing Ptr described in Section 5.4.1.

Table 8. Summary of basic conversions supported involving single ob-

jects.

50

Most Common Basic Conversions for Contiguous Array Types
Type To Type From Properties C++ code (or impl function)

ArrayRCP<S> S* Sh, Ex, Ow arcp(s p,0,n) 1

ArrayRCP<S> S* Sh, Ex, NOw arcp(s p,0,n,false) 2

ArrayRCP<S> Array<S> Sh, Ex, NOw, DR arcpFromArray(s a)

ArrayRCP<S> ArrayView<S> Sh, Ex, NOw, DR arcpFromArrayView(s av)

ArrayRCP<S> ArrayView<S> Dp, Ex, Ow arcpClone(s av)

ArrayRCP<S> RCP<Array<S> > Sh, Ex, Ow, DR arcp(s a rcp)

ArrayRCP<const S> RCP<const Array<S> > Sh, Ex, Ow, DR arcp(cs a rcp)

ArrayRCP<const S> ArrayRCP<S> Sh, Im, Ow, DR ArrayRCP::operator()()

S* ArrayRCP<S> Sh, Ex, NOw s arcp.getRawPtr() 3

S& ArrayRCP<S> Sh, Ex, NOw s arcp[i] 4

ArrayView<S> S* Sh, Ex, NOw arrayView(s p,n) 1

ArrayView<S> Array<S> Sh, Im, NOw, DR Array::operator ArrayView()

ArrayView<S> Tuple<S> Sh, Im, NOw, DR Tuple::operator ArrayView()

ArrayView<S> std::vector<S> Sh, Im, NOw ArrayView<S>(s v)

ArrayView<S> ArrayRCP<S> Sh, Ex, NOw, DR ArrayRCP::operator()()

ArrayView<const S> const Array<S> Sh, Im, NOw, DR Array::operator ArrayView()

ArrayView<const S> const Tuple<S> Sh, Im, NOw, DR Tuple::operator ArrayView()

ArrayView<const S> const std::vector<S> Sh, Im, NOw ArrayView(cs v)

ArrayView<const S> ArrayRCP<const S> Sh, Ex, NOw, DR ArrayRCP::operator ArrayView()

S* ArrayView<S> Ex, NOw s av.getRawPtr() 3

S& ArrayView<S> Ex, NOw s av[i] 4

Array<S> S* Dp, Ex Array<S>(s p,s p+n)

Array<S> std::vector<S> Dp, Im Array<S>(s v)

Array<S> ArrayView<S> Dp, Im Array<S>(s av)

Array<S> Tuple<S,N> Dp, Im Array<S>(s t)

Array<S> ArrayRCP<S> Dp, Ex Array<S>(s arcp());

std::vector<S> Array<S> Dp, Ex s a.toVector();

S* Array<S> Ex, NOw s a.getRawPtr() 3

S& Array<S> Ex, NOw s a[i] 4

Types/identifiers: S* s p; ArrayView<S> s av; ArrayRCP<S> s arcp; Array<S> s a; Tuple<S,N> s t;

std::vector<S> s v; RCP<Array<S> > s a rcp; RCP<const Array<S> > cs a rcp;

Properties: Sh = Shallow copy, Dp = Deep copy (dangling references not an issue), Im = Implicit conversion, Ex =

Explicit conversion, Ow = Owning (dangling references not an issue), NOw = Non-Owning, DR = Dangling Reference

debug-mode runtime detection for non-owning

1. It should never be necessary to convert from a raw pointer to an owning ArrayRCP object directly. Instead, use

the non-member constructor arcp<S>(n).

2. Constructing a non-owning ArrayRCP or ArrayView directly from a raw C++ pointer should never be needed

in fully compliant code. However, when inter-operating with non-compliant code (or code in an intermediate

state of refactoring) this type of conversion will be needed.

3. Exposing a raw C++ pointer should never be necessary in compliant code but may be necessary when inter-

operating with external code (see Section 5.2).

4. Exposing a raw C++ reference will be common in compliant code but should only be used for non-persisting

associations.

Table 9. Summary of basic conversions supported for contiguous ar-

rays.
51

5.7.3 Implicit type conversion problems and shortcomings

Implicit conversions between different Teuchos memory management types, especially in templated

application code, is one of the most confusing aspects of using these classes. As shown in Figures 2 and 3,

many different implicit conversions are defined. An implicit conversion will only be performed by the C++

compiler to satisfy the formal arguments for a function call when several conditions are satisfied: a) when

it is needed to call a function where no other better functions provide a better match, b) when only a single

implicit conversion for each argument is sufficient, and c) when calling a non-template function (or a

template function where all of the template arguments are explicitly specified). Also, the C++ compiler

will not be able to do implicit conversions to satisfy a function call when ambiguous function calls exists.

Explaining the behavior of these implicit conversions in C++ gets down to the low-level details of the C++

type system that many C++ programmers take for granted or don’t understand all that well in the first place.

Almost all of the problems that programmers have with implicit conversions occur when trying to call

functions where implicit conversions are required to satisfy the signature of the function. Some of these

problems occur when developers fail to understand the C++ type system. Other problems are due to a

fundamental handicap that smart pointer types have with respect to raw C++ pointers.

Implicit conversions of the Teuchos memory management classes (or any other C++ classes in any other

library) needed to call a given function fail for one of the following reasons:

1. Implicit conversions to functions fail because the memory management types are not passed by const

reference (or by value) and are mistakenly (or on purpose) passed by non-const reference. (This is a

programming error.)

2. Implicit conversions fail because templated functions cannot perform implicit conversions in order to

satisfy a call. (This is a language usability annoyance associated with templates but also represents a

fundamental shortcoming of smart pointers compared to raw C++ pointers.)

3. Implicit conversions fail due to ambiguous overloaded calls to overloaded functions that would

otherwise work just fine when raw C++ pointers are involved. (This is a fundamental shortcoming of

smart pointers or any other class as compared to raw C++ pointers.)

Each of these types of problems are examined one at a time in the following three subsections.

Implicit conversions failing due to passing by non-const reference

First, consider implicit conversion problems caused by erroneously passing Teuchos memory management

objects by non-const references instead of by const reference. Consider the user-written function in

Listing 33 that mistakenly passes an RCP by non-const reference.

Listing 33 : User function with a bad pass by non-const reference problem

class Base { ... };

class Derived : public Base { ... };

52

void someUserFunction(RCP<const Base> &base); // Should be ’const RCP<>&’

void someOtherUserFunction()

{

RCP<Derived> derived(new Derived);

someUserFunction(derived); // Compile error, no implicit conversion!

RCP<const Derived> cderived = derived;

someUserFunction(cderived); // Compile error, no implicit conversion!

RCP<Base> base = derived;

someUserFunction(base); // Complile error, no implicit conversion!

RCP<const Base> cbase = base;

someUserFunction(cbase); // Compliles fine, exact match!

}

When user code tries to call someUserFunction(...) as shown in Listing 33, the C++ compiler refuses

to perform the implicit type conversions because the compiler will never perform an implicit type

conversion for an argument passed by non-const reference. This type of error is made at least once by most

developers when they first start using the Teuchos memory management classes and they can’t understand

why the code does not compile. To understand why the implicit conversions in Listing 33 are not

occurring, one must understand the C++ type system in how it handles basic type conversions. The C++

standard specifies that implicit type conversions to facilitate the call of a C++ function will only occur for

arguments passed by value or by const reference. For example, a C++ compiler will convert an int into a

double to call a function taking a double argument but only if the double is passed by value (i.e. double

x) or by const reference (i.e. const double& x). The same holds true for C++ pointer types. Note that

every pointer type (e.g. int*, SomeType*) is a new C++ value data type that is automatically defined by the

compiler for every defined type. The C++ compiler also automatically defines implicit conversions

between pointer types for T* to const T* and for Derived* to Base* (or combinations of both with

Derived* to const Base*). While C++ pointer data types have a special place in the C++ language, they

behave exactly like every other data type in C++ with respect to non-const references and implicit

conversions. That is, if a pointer object is passed by non-const reference instead of by value, the compiler

will refuse the perform the implicit conversion. For example, the equivalent code to Listing 33 replacing

RCP with raw pointers shown in Listing 34 will also result in code that will not compile.

Listing 34 : User function with a bad pass by non-const reference problem using raw pointers

typedef const Base* ptr_const_Base; // Equivalent to RCP<const Base>

void someUserFunction(ptr_const_Base &base); // Bad pass by non-const ref!

void someOtherUserFunction()

{

Derived *derived = new Derived;

someUserFunction(derived); // Compile error, no implicit conversion!

const Derived *cderived = derived;

someUserFunction(cderived); // Compile error, no implicit conversion!

Base *base = derived;

someUserFunction(base); // Complile error, no implicit conversion!

const Base *cbase = base;

someUserFunction(cbase); // Compliles fine, exact match!

delete derived;

53

}

The way to fix this problem is to pass the Teuchos memory management types (or any other type one wants

the compiler to perform an implicit conversion on) by const reference. For example, fixing the code in

Listing 33 to pass by const reference shown in Listing 35 results in code that compiles just fine with the

C++ compiler performing all of the expected implicit conversions.

Listing 35 : User function with corrected pass by const reference

void someUserFunction(const RCP<const Base> &base); // Now correct!

void someOtherUserFunction()

{

RCP<Derived> derived(new Derived);

someUserFunction(derived); // Compiles fine, Derived* -> const Base*

RCP<const Derived> cderived = derived;

someUserFunction(cderived); // Compiles fine, const Derived* -> const Base*

RCP<Base> base = derived;

someUserFunction(base); // Compiles fine, Base* -> const Base*

RCP<const Base> cbase = base;

someUserFunction(cbase); // Compliles fine, exact match!

}

Implicit conversions failing due to templated function

Another situation where implicit conversions will fail to be performed to satisfy a function call are when

the function being called is a template function. The C++98 standard does not allow the implicit

conversion of input arguments in order to call a template function [26, Item 45]. For example, consider the

code in Listing 36 that fails to compile:

Listing 36 : Situation where implicit conversion fails due to a template function.

template<class T> class Base { ... };

template<class T> class Derived : public Base<T> { ... };

template<class T>

void someTemplateUserFunction(const RCP<const Base<T> > &base);

template<class T>

void someOtherTemplateUserFunction()

{

RCP<Derived<T> > derived(new Derived<T>);

someTemplateUserFunction(derived); // No implicit conv, no compmile!

RCP<const Derived<T> > cderived = derived;

someTemplateUserFunction(cderived); // No implicit conv, no compmile!

RCP<Base<T> > base = derived;

someTemplateUserFunction(base); // No implicit conv, no compmile!

RCP<const Base<T> > cbase = base;

54

someTemplateUserFunction(cbase); // Exact match, compiles!

}

What is frustrating and yet interesting about this situation is that if the RCPs are replaced with raw pointers,

as shown in Listing 37, the C++ compiler will perform the implicit type conversions just fine.

Listing 37 : Example where implicit conversion to call a template function works fine when using raw
C++ pointers.

template<class T>

void someTemplateUserFunction(const Base<T> *base);

template<class T>

void someOtherTemplateUserFunction()

{

Derived<T> *derived = new Derived<T>;

someTemplateUserFunction(derived); // Okay, Derived<T>* -> const Base<T>*

const Derived<T> *cderived = derived;

someTemplateUserFunction(cderived); // Okay, const Derived<T>* -> const Base<T>*

Base<T> *base = derived;

someTemplateUserFunction(base); // Okay, Base<T>* -> const Base<T>*

const Base<T> *cbase = base;

someTemplateUserFunction(cbase); // Okay, exact match!

delete derived;

}

Comparing the templated code in Listing 36 and Listing 37 it is clear that C++ assigns special privileges

and abilities to the conversion of raw C++ pointer data types that are not afforded to any other data type.

This is the first example of where smart pointer classes in C++ are put at a fundamental disadvantage with

respect to raw C++ pointers. This is an unfortunate situation but the problem can be dealt with by either

forcing the conversion of the input arguments or by explicitly specifying the template arguments as shown,

for example, in Listing 38.

Listing 38 : Example of methods for addressing implicit conversions to allow the call of templated
functions

template<class T>

void someTemplateUserFunction(const RCP<const Base<T> > &base);

template<class T>

void someOtherUserTemplateFunction()

{

RCP<Derived<T> > derived(new Derived<T>);

// Force the conversion Derived<T>* -> const Base<T>*

someTemplateUserFunction(RCP<const Base<T> >(derived));

// or, specify template argument allowing implicit conversion

// Derived<T>* -> const Base<T>*

someTemplateUserFunction<T>(derived);

...

}

55

As shown in Listing 38, typically the least verbose way to call a template function that requires a

conversion of input arguments is to just explicitly specify the template argument(s) which turns the

template function into a regular function in the eyes of the C++ compiler and then implicit conversions will

be allowed to satisfy the function call9.

Implicit conversions failing due to ambiguous overloaded function calls

The last situation to discuss where implicit conversions will fail to be performed for the Teuchos memory

management types occurs when calling overloaded functions that require a conversion of the internal

pointer type that would otherwise work just fine for raw C++ pointers. Consider the example code in

Listing 39 showing the use of overloaded functions that differ in the const type of the object.

Listing 39 : Example of ambiguous calls to overloaded functions

class Base { ... };

class Derived : public Base { ... };

void someUserFunction(const RCP<Base> &base); // Overload #1

void someUserFunction(const RCP<const Base> &base); // Overload #2

void someOtherUserFunction()

{

RCP<Derived> derived(new Derived);

someUserFunction(derived); // Compile error, ambiguous call

RCP<const Derived> cderived = derived;

someUserFunction(cderived); // Compile error, ambiguous call

RCP<Base> base = derived;

someUserFunction(base); // Okay, exact match for Overload #1

RCP<const Base> cbase = base;

someUserFunction(cbase); // Okay, exact match for Overload #2

}

The reason that the first two function calls in Listing 39 with RCP<Derived> and RCP<const Derived>

result in ambiguous function call compile errors is that the C++ compiler is not smart enough to know that

a conversion from RCP<Derived> to RCP<Base> is better than a conversion from RCP<Derived> to

RCP<const Base> which would allow the first function call to result in a call to Overload #1, for instance.

However, if raw C++ pointers are used in same code, as shown in Listing 40, the compiler will make the

right implicit conversions and call the right overloaded functions just fine.

Listing 40 : Example of implicit conversions for overloaded functions that work just fine for raw pointers

void someUserFunction(Base *base); // Overload #1

void someUserFunction(const Base *base); // Overload #2

void someOtherUserFunction()

9Enabling emplicit conversions of input arguments for template functions with explicitly defined template arguments does not

work on always work on even recent versions of the Sun C++ compiler.

56

{

Derived *derived = new Derived;

someUserFunction(derived); // Calls Overload #1: Derived* -> Base*

const Derived *cderived = derived;

someUserFunction(cderived); // Calls Overload #2: const Derived* -> const Base*

Base *base = derived;

someUserFunction(base); // Okay, exact match for Overload #1

const Base *cbase = base;

someUserFunction(cbase); // Okay, exact match for Overload #2

delete derived;

}

Again, similar to the templated function example given above, comparing Listing 39 and Listing 40, it is

clear that the conversions of raw C++ pointer types to call overloaded functions are given special privileges

and abilities that are not afforded to any other data type in C++. The C++ compiler will resolve overloaded

functions for the conversion of C++ pointer types based on the least required conversions (e.g. Derived* to

Base* is better than Derived* to const Base*). This is wonderful behavior for raw C++ pointers (or

perhaps confusing depending on how one looks at it) but such special abilities are not afforded to smart

pointer types like Ptr or RCP (or any other smart pointer type including boost::shared ptr)10.

Problems in calling overloaded functions like this can be resolved but only through explicitly converting

the input arguments as shown in Listing 41.

Listing 41 : Example of resolving ambiguous calls to overloaded functions through explicit argument
conversions

void someUserFunction(const RCP<Base> &base); // Overload #1

void someUserFunction(const RCP<const Base> &base); // Overload #2

void someOtherUserFunction()

{

RCP<Derived> derived(new Derived);

someUserFunction(RCP<Base>(derived)); // Calls Overload #1

someUserFunction(RCP<const Base>(derived)); // Calls Overload #2

...

}

Having to explicitly convert input arguments to satisfy overloaded function calls gets annoying very quickly

for any reasonable-minded programmer. A much better way to deal with the problem of overload functions

and smart pointer types is to not use overloaded functions in the first place as demonstrated in Listing 42.

Listing 42 : Example of resolving ambiguous calls to overloaded functions by not using overloaded
functions in the first place

void someNonconstUserFunction(const RCP<Base> &base);

void someUserFunction(const RCP<const Base> &base);

10Fixing the problem of implicit conversions for template and overloaded functions to put smart pointers at the same level as raw

pointers would require a C++ language extension.

57

void someOtherUserFunction()

{

RCP<Derived> derived(new Derived);

// Compiles fine, implicit conv: Derived* -> Base*

someNonconstUserFunction(derived);

// Compiles fine, implicit conv: Derived* -> const Base*

someUserFunction(derived);

...

}

Avoiding problems with ambiguous function calls to overloaded functions by avoiding overloaded

functions (as demonstrated in Listing 42) may seem like a bit of cop-out but in general function

overloading tends to be abused in C++ anyway. In many cases, code can be much more clear by using

different function names in cases where most developers would just use overloaded functions (perhaps

because they cannot think of better non-overloaded names).

5.8 Core idioms for the use of the Teuchos memory management classes

Well designed C++ class libraries are created together with a set of idioms for their use and this is

especially true for the Teuchos Memory Management classes. This paper describes idioms related to the

creation of single dynamically allocated objects, for defining and using local variables and data members,

for passing objects and arrays of objects to and from functions, and for returning objects and arrays of

objects as return values from functions. It is critical that these idioms be used consistently in order to yield

the safest, highest quality, clearest, most self-documenting code.

5.8.1 The non-member constructor function idiom

The mainstream C++ literature espousing the use of smart reference-counted pointers like

boost::shared ptr seems to lack a solution for an effective, safe, and clean way to create new

dynamically allocated objects. To demonstrate the issues involved, consider the C++ class Blaget shown

in Listing 43:

Listing 43 : A class taking multiple dynamically allocatable objects

class Blaget {

public:

Blaget(const RCP<Widget> &widgetA, const RCP<Widget> const widgetB);

widgetA_(widget), widgetB_(widget) {}

...

private:

RCP<Widget> widgetA_;

RCP<Widget> widgetB_;

};

Now consider how one might go about constructing a Blaget object on the stack given newly dynamically

allocated Widget objects. A compact, clean, and seemingly safe way to do so is shown in Listing 44.

58

Listing 44 : A leaky way to construct

Blaget blaget(rcp(new Widget()), rcp(new Widget()));

The problem with the code in Listing 44 is that it might result in a memory leak if an exception is thrown

by one of the constructors for Widget (see [31, Item 13]). The reason that a memory leak might occur is

that a C++ compiler is allowed to evaluate both new Widget() calls before calling the rcp() functions. If

the second constructor Widget() throws an exception after the first Widget() constructor has been

invoked but before the RCP object wrapping the first Widget object is constructed, then the memory created

by the first new Widget() will never be reclaimed.

The current C++ literature (see [31, Item 13]) recommends rewriting constructor code like shown in

Listing 44 using temporary local variables as shown in Listing 45.

Listing 45 : A sound but verbose way to construct

RCP<Widget> widgetA(new Widget());

RCP<Widget> widgetB(new Widget());

Blaget blaget(widgetA, widgetB);

While the code in Listing 45 will avoid a memory leak being created in case an exception is thrown,

competent Java and Python programs will rightfully be disgusted that they have to create temporary

variables just to call another constructor. From a software engineering perspective, it is undesirable to

create useless local variables like widgetA and widgetB because they might be inadvertently copied and

used for other purposes, resulting in undesirable side-effects.

The way to solve the problems described above is to provide non-member constructor functions for all

dynamically allocatable reference-type classes and then always call them to create RCP-wrapped objects in

client code. In fact, to avoid mistakes when using reference-type classes, one should disallow the creation

of reference-type objects except through a provided non-member constructor. A non-member constructor

compliant Widget class declaration is shown in Listing 46.

Listing 46 : The non-member constructor idiom for reference-type classes

class Widget {

public:

static RCP<Widget> create() { return rcp(new Widget); }

void display(std::ostream&);

private: // or protected

// Not for user’s to call!

Widget();

Widget(const Widget&);

Widget& operator=(const Widget&);

};

// Non-member constructor function

inline RCP<Widget> createWidget() { return Widget::create(); }

59

Using the non-member constructor function createWidget(), the unsafe constructor call in Listing 44 can

be written as shown in Listing 47.

Listing 47 : Clean and bullet-proof way to construct dynamically allocated objects using the
“non-member constructor function” idiom

Blaget blaget(createWidget(), createWidget());

The code in Listing 47 will never result in a memory leak if an exception is thrown because each argument

is returned as a fully formed RCP object which will clean up memory if any exception is thrown.

Note that the use of the non-member constructor idiom not only means that raw calls to delete are

encapsulated in all high-level C++ code (due to the use of RCP), but it also means that raw calls to new

should be largely encapsulated as well!

The non-member constructor idiom as shown in Listing 46 where a reference-type object can only be

dynamically allocated and returned wrapped in an RCP object is recommended for all reference-type

objects. The reason for this is that, as described in Section 5.9, when an object is dynamically allocated in

managed in an RCP object, a number of important debug-mode runtime checks can be performed which

cannot be when the object is first allocated on the stack or managed as a static object.

5.8.2 General idioms for handling arrays of objects

Before describing specific idioms for class data members, formal function arguments, and function return

types it is worth discussing how arrays of objects are treated in a common way in all of these idioms and

why. A common set of idioms that is used throughout is how arrays of value-type objects and

reference-types objects are handled. When dealing with an array of value-type objects, typically a

contiguous array of objects will be allocated. For example, to create an array of value-type objects one

would declare:

Array<S> valTypeArray;

In this case, the storage for the array holding the value-type objects and the storage for the value-type

objects themselves are one and the same. This is also true for persisting and non-persisting views of array

of value-type objects represented as ArrayRCP<[const] S> and ArrayView<[const] S>, respectively. It

is common for numerical programs to create very large arrays of value-type objects of integers and floating

point numbers. Therefore, it is usually important to share these arrays and pass them around instead of

creating copies. Because if this, it is typical to see ArrayRCP<[const] S> being used to share large

value-type arrays of objects.

On the other hand, one cannot generally allocate a contiguous array of reference-type objects. Instead, one

has to allocate and use a contiguous array of (smart) pointer objects that then point to individually allocated

reference-type objects. For example, to store an array of dynamically allocated reference-type objects, one

would declare:

Array<RCP<A> > refTypeArray;

60

Anyone familiar with object-oriented programming in C++ should already knows this, but they might be

accustomed to allocating and working with arrays of raw pointers like std::vector<T*>. This is a really

bad idea of course which is mentioned in Item 79 “Store only values and smart pointers in containers” in

[31]. In this case, one can think of the storage for the array of RCP value-type objects and the storage for the

reference-type objects of type A themselves to be different sets of storage. For example, one can change

what A object is pointed to in the RCP<A> object stored in the contiguous array to without changing the A

object itself such as in Listing 48:

Listing 48 : Code that changes memory in the contiguous array but does not touch the memory in the
reference-type objects themselves

void foo(Array<RCP<A> > &refTypeArray, const RCP<A> &someA)

{

refTypeArray[0] = someA;

}

Note in Listing 48 that technically the memory stored in the array (of RCP<A> objects) was changed but the

memory stored in the reference-type objects being pointed to where not changed at all. Likewise, one can

change an A object itself without disturbing the array storage inside of the Array<RCP<A> > object itself

such as shown in Listing 49:

Listing 49 : Code that changes the memory associated with the reference-type objects but does not change
the memory of the contiguous array at all

void foo(const Array<RCP<A> > &refTypeArray)

{

refTypeArray[0]->someChange();

}

As opposed to arrays used to store value-type objects (e.g. int, float, double, std::complex<double>,

etc.) which can be huge (with millions of elements) one typically does not create large arrays of

reference-type objects. (Note that creating large arrays of reference-type objects would generally imply

that the reference-type objects are small and cheap and therefore creating a large array of RCP objects could

impart a large storage and runtime overhead as described in Section 5.12.1.) Since arrays of reference-type

objects tend to be small in well designed programs, one usually does not care to share the array storage of

Ptr or RCP objects itself, only the reference-type objects they point to. Because of this, one typically will

not see ArrayRCP<[const] RCP<[const] A> > objects being passed around and stored. Instead, one

would typically just pass ArrayView<[const] RCP<[const] A> > objects and then use this array to

create a new Array<[const] RCP<[const] A> > object to copy the smart pointers. In general, we use

arrays of RCP objects for representing persisting associations and arrays of Ptr objects for representing

non-persisting associations when dealing with reference-type objects.

5.8.3 Idioms for class object data members and local variables

In general, class object data members and local variables represent a persisting relationship and therefore

should have unique ownership or use reference counting. That means that the types Ptr and ArrayView

61

Class Data Members for Value-Type Objects

Data member purpose Data member declaration

non-shared, single, const object const S s ;

non-shared, single, non-const object S s ;

non-shared array of non-const objects Array<S> as ;

shared array of non-const objects RCP<Array<S> > as ;

non-shared statically sized array of non-const objects Tuple<S,N> as ;

shared statically sized array of non-const objects RCP<Tuple<S,N> > as ;

shared fixed-sized array of const objects ArrayRCP<const S> as ;

shared fixed-sized array of non-const objects ArrayRCP<S> as ;

Table 10. Idioms for class data member declarations for value-type

objects.

Class Data Members for Reference-Type Objects

Data member purpose Data member declaration

non-shared or shared, single, const object RCP<const A> a ;

non-shared or shared, single, non-const object RCP<A> a ;

non-shared array of const objects Array<RCP<const A> > aa ;

non-shared array of non-const objects Array<RCP<A> > aa ;

shared fixed-sized array of const objects ArrayRCP<RCP<const A> > aa ;

“...” (const ptr) ArrayRCP<const RCP<const A> > aa ;

shared fixed-sized array of non-const objects ArrayRCP<RCP<const A> > aa ;

“...” (const ptr) ArrayRCP<const RCP<const A> > aa ;

Table 11. Idioms for class data member declarations for reference-types

objects.

should almost never be used for class object data members or local variables (especially not for data

members). However, local variables of type Ptr and ArrayView will be created in a function when that are

created off other Ptr and ArrayView objects (passed through the formal argument list). The types Ptr and

ArrayView will also be used as local variables when semi-persisting associations are involved (see

Section 5.12.3 for an example).

Tables 10 and 11 give some idioms for class object data members. Usages for local variables are similar.

Table 10 shows a few use cases involving value-type objects. Table 11 shows use cases involving

reference-type objects. Every possible use case is not shown in these tables, only the most common ones.

There is almost no end to the number of different types of data structures that can be created by embedding

these memory management types in each other to address different needs. When creating these composite

data structures one just needs to understand the implications for the selections of the class types and for the

use of const.

It is important to note that an RCP<S> data member for a value-type object is not shown in Table 10. That is

62

because once one declares an RCP object pointing to a value-type object, at that point one is treating the

value-type object with reference semantics so it would be considered to be a reference-type object (which

takes one to Table 11). Again, most value-type class objects can be treated as reference-types in certain

contexts (e.g. such as when dynamically allocating a large Array object so it can be shared and avoid

expensive deep copy semantics).

Note that there are a few other important differences between the way that value-type objects and

reference-type objects are handled. The main difference, obviously, is that one can hold a value-type object

by value but not for a reference-type object. One can see this in how single objects are stored and how

arrays of objects are declared in Table 11.

5.8.4 Idioms for the specification of formal arguments for C++ functions

Described here are idioms for the specification of the formal arguments for C++ functions that maximize

compile-time and debug-mode run-time checking, yield near optimal raw pointer performance for

non-debug-mode builds, and result in highly self-documenting code. A key component to this specification

is that no raw C++ pointers are used. Raw pointers are the cause of almost all memory usage problems in

C++. Raw C++ references, on the other hand, are safe to use as long as the object reference they are being

used to point to is valid and no persisting association exists (see Section 5.4.3).

Tables 12 and 13 give conventions for passing single objects and arrays of objects for value-type and

reference-type objects, respectively. In this specification, the Teuchos classes Ptr, RCP, ArrayRCP, and

ArrayView are used as a means to pass objects of another type (shown as S and A in Tables 12 and 13).

Conventions are shown for both passing in objects and for passing out objects through the formal

arguments to C++ functions. Note that value-type objects can always be handled using reference semantics

so all of the passing conventions in Table 13 apply equally as well for value-type objects as they do for

reference-type objects. However, the conventions in Table 12 only apply to value-type objects that can be

stored in contiguous arrays.

This specification addresses the five different properties that must be considered when passing an object to

a function as a formal function argument (or passing back an object through a formal function argument):

• Is it a single object or an array of objects?

• Does the object or array of objects use value semantics or reference semantics?

• Is the object or array of objects changeable or non-changeable (i.e. const)?

• Is this establishing a persisting or non-persisting (or semi-persisting) association?

• Is the object or array of objects optional or required?

The first four of these properties are directly expressed in the C++ code in all cases shown in Tables 12 and

13. The specification for whether an argument or object is required or optional must be documented in the

function’s interface specification (i.e. in a Doxygen documentation param field). It is declared here that, by

default, an argument passed through an Ptr, RCP, ArrayView, or ArrayRCP object will be assumed to be

required (i.e. non-null) unless otherwise stated. The only exception for this implicit assumption for

63

Passing IN Non-Persisting Associations to Value Objects as Func Args

Argument Purpose Formal Argument Declaration

single, non-changeable object (required) S s or const S s or const S &s

single, non-changeable object (optional) const Ptr<const S> &s

single, changeable object (required) const Ptr<S> &s or S &s

single, changeable object (optional) const Ptr<S> &s

array of non-changeable objects const ArrayView<const S> &as

array of changeable objects const ArrayView<S> &as

Passing IN Persisting Associations to Value Objects as Func Args

(Use cases not covered by reference semantics used for value types)

Argument Purpose Formal Argument Declaration

array of non-changeable objects const ArrayRCP<const S> &as

array of changeable objects const ArrayRCP<S> &ss

Passing OUT Persisting Associations for Value Objects as Func Args

(Use cases not covered by reference semantics used for value types)

Argument Purpose Formal Argument Declaration

array of non-changeable objects const Ptr<ArrayRCP<const S> > &as

array of changeable objects const Ptr<ArrayRCP<S> > &as

Passing OUT Semi-Persisting Associations for Value Objects as Func Args

(Use cases not covered by reference semantics used for value types)

Argument Purpose Formal Argument Declaration

array of non-changeable objects const Ptr<ArrayView<const S> > &as

array of changeable objects const Ptr<ArrayView<S> > &as

Table 12. Idioms for passing value-type objects to C++ functions.

64

Passing IN Non-Persisting Associations to Reference (or Value) Objects as Func Args

Argument Purpose Formal Argument Declaration

single, non-changeable object (required) const A &a

single, non-changeable object (optional) const Ptr<const A> &a

single, changeable object (required) const Ptr<A> &a or A &a

single, changeable object (optional) const Ptr<A> &a

array of non-changeable objects const ArrayView<const Ptr<const A> > &aa

array of changeable objects const ArrayView<const Ptr<A> > &aa

Passing IN Persisting Associations to Reference (or Value) Objects as Func Args

Argument Purpose Formal Argument Declaration

single, non-changeable object const RCP<const A> &a

single, changeable object const RCP<A> &a

array of non-changeable objects const ArrayView<const RCP<const A> > &aa

array of changeable objects const ArrayView<const RCP<A> > &aa

Passing OUT Persisting Associations for Reference (or Value) Objects as Func Args

Argument Purpose Formal Argument Declaration

single, non-changeable object const Ptr<RCP<const A> > &a

single, changeable object const Ptr<RCP<A> > &a

array of non-changeable objects const ArrayView<RCP<const A> > &aa

array of changeable objects const ArrayView<RCP<A> > &aa

Passing OUT Semi-Persisting Associations for Reference (or Value) Objects as Func Args

Argument Purpose Formal Argument Declaration

single, non-changeable object const Ptr<Ptr<const A> > &a

single, changeable object const Ptr<Ptr<A> > &a

array of non-changeable objects const ArrayView<Ptr<const A> > &aa

array of changeable objects const ArrayView<Ptr<A> > &aa

Table 13. Idioms for passing reference-type objects to C++ functions.

65

non-null objects is const Ptr<const T>& for single, non-changeable, non-persisting, objects where these

always mean that the argument is optional. If such an argument is required, it is specified as const T&.

An array of value objects is passed as contiguous storage through an ArrayView<S> or ArrayView<const

S> object. An array of reference objects, however, cannot be passed in contiguous storage for the objects

themselves and instead must be passed as contiguous storage of (smart) pointers to the objects using

ArrayView<const Ptr<const A> > for non-persisting associations or ArrayView<const RCP<const

A> > for persisting associations. The const can be removed from the either Ptr/RCP or A depending on

what is allowed to change or not change during the function call.

Note that in the case of Ptr, RCP, ArrayView, and ArrayRCP objects, that these can be treated as output

objects in their own right which is shown in Tables 12 and 13 for passing out persisting and semi-persisting

relationships to single objects and arrays of objects. For example, passing an RCP<T> object into a function

to be set to point to a different A object would be specified in the function prototype as const Ptr<RCP<A>

>& or RCP<A>& depending on preference (only the case const Ptr<RCP<A> >& is shown in the tables

which is a better self-documenting form and provides better debug-mode runtime checking since it can

detect dangling references). Note that semi-persisting associations are always passed out as Ptr and

ArrayView objects. These types have essentially zero overhead in an optimized build but yet have full

runtime checking including detection and reporting of dangling references in a debug-mode build (see

Section 5.12.3 for a discussion of the motivation and usage of semi-persisting associations). The types RCP

and ArrayRCP are always used to establish persisting associations.

Variations in passing single changeable objects

The only area of contention in this specification is how to handle arguments for required single changeable

objects. The specification described here allows either passing them through a smart pointer as const

Ptr<T>& or as a raw non-const object reference as T&. In Item 25 in [31], the authors recommend passing a

raw non-const object reference T& for changeable required objects, which seems very reasonable. However,

other notable authors [29, Section Section 5.5] and [24, Section 13.2] and the Google C++ coding

standard11 recommend passing a pointer instead, as it provides a visual clue that the object is being

modified in the function call. Of course, the idioms defined here do not allow raw pointers so one must

pass a const Ptr<T>& object instead. To consider the issues, for example, looking at the function call in

Listing 50, which (if any) argument(s) are being modified?

Listing 50 : Function call using all raw references where it is impossible to determine what objects are
modified in the call

someFunction(a, b, c, d);

To tell for sure which objects are being modified in Listing 50, one would have to look at the function

prototype shown in Listing 51 to see that it is the d argument that is being modified in the function call.

Listing 51 : Function prototype where all objects are passed as raw C++ references

void someFunction(const A& a, const B& b, const C& c, D& d);

11http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml

66

Now consider the convention that all changeable arguments be passed in through a pointer as const

Ptr<T>&, giving the new prototype shown in Listing 52.

Listing 52 : Function prototype where modified objects are passed through Ptr leading to
self-documenting client code

void someFunction(const A& a, const B& b, const C& c,

const Ptr<D>& d);

Now the new function call in Listing 53 is self-documenting with regards to which object is modified in the

function call by using the outArg(...) templated non-member function (see outArg(...) in Listing 19).

Listing 53 : Self-documenting function call that shows what argument is modified in the function call

someFunction(a, b, c, outArg(d));

Also, given that all Ptr<T> arguments are assumed to be non-null by default, this specifies that passing an

argument as const Ptr<T>& has all of the same meaning that passing an argument by T&. Of course now

one has given up a compile-time check for a non-null argument for T& with a debug-mode runtime check

that const Ptr<T>& is non-null. Theoretically, the compile-time check would appear to be far superior but

in reality the debug-mode runtime check is usually what happens anyway since the raw object reference

would typically be created from a smart pointer in most cases (which can be null, resulting in a null

dereference runtime exception in a debug-mode build). Therefore the issue is not whether a compile-time

check will catch passing a null-object (because it can’t) but instead the issue is how soon a debug-mode

runtime check will catch a dereference of a null smart pointer.

Converting from non-persisting to persisting references to satisfy the defined idioms

There are legitimate instances where client code needs to convert a non-persisting reference (i.e. T&,

Ptr<T>, or ArrayView<T>) to a persisting reference (i.e. RCP or ArrayRCP) in order to satisfy the idioms

outlined in Tables 12 and 13. The most common case is when a function is passed a raw reference or a Ptr

to a C++ object (for a non-persisting association) but the function’s implementation must create (and

destroy) and object what has a persisting association with the passed in object. Consider the classes A, B

and C shown in Listing 9 where C maintains an RCP to B. Now consider a client function that needs an A and

B object to perform its function but also needs to create and destroy a C object internally giving it the B

object. In order to be consistent with the idioms defined here, the B object must be passed as a raw C++

reference or through a Ptr object. Listing 54 shows how to convert from a raw C++ reference to a

non-owning RCP object to satisfy the idioms.

Listing 54 : Converting from a raw C++ reference to an RCP object to satisfy function argument passing
idiom

void doSomeOperation(B &b, const A &a)

{

67

...

C c;

const RCP b_rcp = rcpFromRef(b);

c.fooC1(b_rcp, a);

c.fooC2();

...

// The C object is destroyed here!

}

In Listing 54, the standard conversion function rcpFromRef(...) converts from a raw C++ reference to a

non-owning RCP object. Creating an RCP like is perfectly safe and correct. The lifetime of the created C

object is contained within the function doSomeOperation(...) so the promise of not creating a persisting

association inherent in the functions prototype (i.e. passing the B object as a raw C++ reference) is being

correctly kept. Note that if the created non-owning RCP is accidentally used to create a persisting

association then, in many cases, the dangling reference will be caught by the built-in debug-mode runtime

checking (see Section 5.11.3).

A similar type of conversion is required when passing in an object through a Ptr object. For example, the

function in Listing 54 may instead pass in a Ptr object instead of a raw C++ reference B& and the

refactored function is shown in Listing 55.

Listing 55 : Converting from a Ptr object to an RCP object to satisfy function argument passing idiom

void doSomeOperation(const Ptr &b, const A &a)

{

...

C c;

const RCP b_rcp = rcpFromPtr(b);

c.fooC1(b_rcp, a);

c.fooC2();

...

// The C object is destroyed here!

}

Again, if a persisting association is accidentally created by copying the RCP object created in Listing 55

then this can be detected in a debug-mode build. Note that the conversion from Ptr to RCP shown

in in Listing 55 actually generates much more efficient code in a debug-mode build because

dangling-reference detection is implemented without having to perform a more expensive node look-up as

described in Section 5.11.3.

5.8.5 Idioms for returning objects from C++ functions

Idioms for how objects are returned from C++ functions are also important in order to achieve C++ code

that is efficient, safe (with both compile-time and debug-mode run-time checking), and is as

self-documenting as possible. Tables 14 and 15 give common specifications for returning single objects

and arrays of objects for both value-type and reference-type objects for non-persisting, persisting, and

semi-persisting associations. Five different types of properties that must be defined and considered when

returning an object (or array of objects) from a function:

68

Returning Non-Persisting Associations to Value Objects

Purpose Return Type Declaration

Single copied object (return by value) S

Single non-changeable object (required) const S&

Single non-changeable object (optional) Ptr<const S>

Single changeable object (required) S&

Single changeable object (optional) Ptr<S>

Array of non-changeable objects ArrayView<const S>

Array of changeable objects ArrayView<S>

Returning Persisting Associations to Value Objects

(Use cases not covered by reference semantics used for value types)

Purpose Return Type Declaration

Array of non-changeable objects ArrayRCP<const S>

Array of changeable objects ArrayRCP<S>

Returning Semi-Persisting Associations to Value Objects

(Use cases not covered by reference semantics used for value types)

Purpose Return Type Declaration

Array of non-changeable objects ArrayView<const S>

Array of changeable objects ArrayView<S>

Table 14. Idioms for returning value-type objects from C++ functions.

• Is it a single object or an array of objects?

• Does the object or array of objects use value semantics or reference semantics?

• Is the object or array of objects changeable or non-changeable (i.e. const)?

• Is this establishing a persisting or non-persisting (or semi-persisting) association?

• Is the object or array of objects optional or required?

These five different properties are the same five described for formal function arguments described in

Section 5.8.4. Again, the first four of these properties are clearly defined in the C++ code itself. However,

again, it is not always possible to directly state in the C++ code declarations whether the object (or array of

objects) is optional or required. Here, we state by default that all array arguments of type ArrayView and

ArrayRCP are assumed to be required non-null arguments by default. Otherwise, documentation must exist

stating that the arguments are optional.

The semantics of return objects is different than for formal function arguments. There are several

differences that one can see from looking at Tables 12 and 13, and Tables 14 and 15. The key difference

between formal functions arguments and return values relates to using constant references for formal

arguments versus returning objects by value as return types. While the memory management objects of

69

Returning Non-Persisting Associations to Reference (or Value) Objects

Purpose Return Type Declaration

Single cloned object RCP<A>

Single non-changeable object (required) const A&

Single non-changeable object (optional) Ptr<const A>

Single changeable object (required) A&

Single changeable object (optional) Ptr<A>

Array of non-changeable objects ArrayView<const Ptr<const A> >

Array of changeable objects ArrayView<const Ptr<A> >

Returning Persisting Associations to Reference (or Value) Objects

Purpose Return Type Declaration

Single non-changeable object RCP<const A>

Single changeable object RCP<A>

Array of non-changeable objects ArrayView<const RCP<const A> >

Array of changeable objects ArrayView<const RCP<A> >

Returning Semi-Persisting Associations to Reference (or Value) Objects

Purpose Return Type Declaration

Single non-changeable object Ptr<const A>

Single changeable object Ptr<A>

Array of non-changeable objects ArrayView<const Ptr<const A> >

Array of changeable objects ArrayView<const Ptr<A> >

Table 15. Idioms for returning reference-type objects from C++ func-

tions.

70

type Ptr, RCP, ArrayView, and ArrayRCP are all passed by constant reference in Tables 12 and 13,

alternatively they are always returned as objects (i.e. return by value) in Tables 14 and 15. The reason that

these memory management objects should always be returned by value is that this is needed to correctly set

up the reference counting machinery to properly set up persisting relationships and to enable debug

runtime checking (e.g. to detect dangling references with semi-persisting associations).

Note that it is critical that semi-persisting associations for single objects must always be returned as

Ptr<T> objects and never as raw references T& which is otherwise acceptable for non-persisting

associations. The reason that Ptr<T> objects must always be used for semi-persisting associations is that in

a debug-mode build, the runtime checking machinery will be able to detect dangling references or changes

in the parent object that would otherwise invalidate the semi-persisting view that is impossible to catch

when using raw C++ references.

In the following section, an extended example is given highlighting the need to return the Teuchos memory

management smart pointer objects by value. If one already accepts the need for this, the example can be

skipped.

Extended example for the need to return smart pointers by value

In order to understand the importance of returning memory management objects by value instead of by

reference, first consider Listing 56 that looks to be perfectly safe code.

Listing 56 : A seemingly safe use of raw C++ references

void seeminglySafeFoo(Blob &blob, Flab &flab)

{

blob.doGoodStuff(flab);

}

The code in Listing 56 does not itself look unsafe. However, the reason that it unsafe comes from the code

that calls seeminglySafeFoo(...) and the code that implements Blob shown in Listing 57.

Listing 57 : Code that makes seeminglySafeFoo(...) fail

class Blob

{

RCP<Flab> flab_;

public:

Blob() : flab_(createFlab()) {}

const RCP<Flab>& getFlab() { return flab_; }

void doGoodStuff(Flab &flab_in)

{

flab_ = createFlab(); // Using non-member constructor

flab_in.conflab(*flab_);

}

};

71

void badCallingFunction()

{

Blob blob;

seeminglySafeFoo(blob, *blob.getFlab());

}

When the code in Listings 56 and 57 executes, it will most likely cause a segfault when it runs, if one is

lucky. However, if unlucky, the code will actually seem to be working correctly on the machine where the

code is initially tested it but will explode later (perhaps years later) when run under different

circumstances. The reason that the code in Listings 56 and 57 is faulty is because the Flab object that is

passed through the call seeminglySafeFoo(blob, *blob.getFlab()) to blob.doGoodStuff(flab) is

invalidated before it is used because it gets destroyed and is replaced by a new object in the expression

flab = createFlab(). When this happens, the object now represented as the raw C++ reference

flab in is deleted which causes the code in the expression flab in->conflab(*flab) to be in error,

and the behavior of the program is undefined (and again will segfault if one is lucky).

How did it come to this situation? What if the raw C++ references were replaced with with RCP-wrapped

objects? Well, consider the updated code in Listing 58.

Listing 58 : Still unsafe code

class Blob

{

RCP<Flab> flab_;

public:

Blob() : flab_(createFlab()) {}

const RCP<Flab>& getFlab() { return flab_; }

void doGoodStuff(const RCP<Flab> &flab_in)

{

flab_ = createFlab(); // Using non-member constructor

flab_in.conflab(*flab_);

}

};

void seeminglySafeFoo(Blob &blob, const RCP<Flab> &flab)

{

blob.doGoodStuff(flab);

}

void badCallingFunction()

{

Blob blob;

seeminglySafeFoo(blob, blob.getFlab());

}

Is the code in Listing 58 correct? The sad answer is no, it is not. The Flab object returned from

blob.getFlab() will still get deleted before it is used in the expression flab ->conflab(flab in).

72

What is going on here? The core of the problem is that the function Blob::getFlab() is incorrectly

implemented. Functions must always return RCP objects by value and never by reference as shown in

Tables 14 and 15. By returning a raw C++ reference to the RCP<Flab> object, a persisting association with

the client is never properly established and this is the root cause of the whole problem.

Now consider the updated code in Listing 59 that goes back to using raw C++ references where appropriate

but now returns the RCP<Flab> object by value as it should.

Listing 59 : Correctly returning RCP by value yielding safe code

class Blob

{

RCP<Flab> flab_;

public:

Blob() : flab_(createFlab()) {}

RCP<Flab> getFlab() { return flab_; } // Returns by value now!

void doGoodStuff(Flab &flab_in)

{

flab_ = createFlab(); // Using non-member constructor

flab_in.conflab(*flab_);

}

};

void seeminglySafeFoo(Blob &blob, Flab &flab)

{

blob.doGoodStuff(flab);

}

void goodCallingFunction()

{

Blob blob;

seeminglySafeFoo(blob, *blob.getFlab());

}

Is the code represented in Listing 59 now safe and correct? Yes it is. The reason that it is now safe and

correct is that a persisting relationship is now being correctly created by the function call blob.getFlab()

in that a new temporary RCP<Flab> object is created (which increments the reference count). From this

new temporary RCP<Flab> object, a raw C++ reference is then returned from *blob.getFlab() and

passed through. In this case, since the reference count on the existing Flab object is now two instead of

one, the expression flab = createFlab() will not delete the existing Flab object and the following

expression flab in.conflab(*flab) will have two valid Flab objects. After the function

seeminglySafeFoo(blob, *blob.getFlab()) exits, the first Flab object will finally be deleted (but

that is just fine).

More examples of function return issues

Another difference between formal function arguments and return values is what persisting and

non-persisting associations mean related to function returns. In the case of objects returned from C++

73

functions, a persisting association is one where the object returned from a C++ function is remembered

past the end of the statement where the C++ function returning the objects is called. For example, consider

the code in Listing 60.

Listing 60 : Example of a bad persisting association implemented as a raw C++ reference (see the Grob
class defined in Listing 61)

void foo(Glob& glob)

{

const Flab &flab = glob.getFlab();

glob.doStuff();

flab.doMoreStuff();

}

The code in Listing 60 represents a persisting association because because the Flab object returned in the

expression const Flab &flab = glob.getFlab() is remembered past the statement where it is called

and is used later in calling flab.doMoreStuff(). This type of code is all too common in C++ programs

(including a lot of code I have written over the last 10 years) but it is not safe because it is not properly

respecting the notion of persisting associations. To see why the code in Listing 60 is so bad, consider the

possible unfortunate implementation of the Glob class shown in Listing 61:

Listing 61 : Bad implementation of the Glob class with respect to persisting associations

class Glob {

RCP<Flab> flab_;

public:

Glob() : flab_(createFlab()) {}

const Flab& getFlab() const { return *flab_; }

void doStuff()

{

flab_ = createFlab(); // Non-member constructor

...

}

};

What happens of course is that the behavior of the code in Listings 60 and 61 is undefined and will most

likely result in a segfault (if one is lucky). The reason this is bad code is that the Flab object reference that

gets returned from glob.getFlab() is not used until after the function Glob::doStuff() gets called

which will delete the Flab object and replace it with another one. This results in flab.doMoreStuff()

being called on a deleted object. Again, this will typically result in a segfault, but on some systems in some

cases the program might actually seem to run just fine, perhaps even for years. This of course is an error

that a tool like Valgrind or Purify would likely catch pretty easily which is why these tools are very useful

to have around. So what rule was broken in Listing 60? Consider again the definition of a persisting

association related to a return value which is:

• Persisting associations are associations that exist between two or more objects that extend past a

single function call for formal function arguments, or a single statement for function return objects.

74

What this means is that any object that is returned as a raw C++ reference from a function must be used in

the same statement from where the returning function is called. Therefore, the function in Listing 60

should be rewritten as shown in Listing 62.

Listing 62 :

void foo(Glob& glob)

{

glob.getFlab().doMoreStuff();

glob.doStuff();

}

Here, of course, one is assuming that the order of evaluation of the functions is not important.

Note that functions returning raw C++ references are common and are fairly safe to use as long as the

returned object is used in the same statement where the function is called. For example, this is what is

commonly done when a non-const reference to an element from a user-defined array class object is

returned and set in the same statements such as shown in Listing 63.

Listing 63 :

void foo(std::vector<int>& a)

{

a[0] = 5; // Non-persisting function return association

...

}

What is typically not safe, of course, is when one tries to save a reference to an object and then use it like in

Listing 64.

Listing 64 :

void foo(std::vector<int>& a)

{

int &a_0 = a[0]; // Incorrect persisting association

a.resize(20);

a_0 = 5; // Will likely segfault if one is lucky!

...

}

The problem with the code in Listing 64 is that the a.resize(20) function might cause a new buffer to be

allocated and the existing buffer to be deleted. This will of course make the reference returned in int &a 0

= a[0] invalid when it is later written to in a 0 = 5.

The whole point of the example code Listings 63 and 64 is to demonstrate the working definition of

persisting & non-persisting associations as they relate to objects returned from functions. This argument

supports the idioms shown in Tables 14 and 15.

75

Figure 4. Basic design of the Teuchos reference-counting machinery.

5.9 Reference-counting machinery in-depth

In order to effectively use these memory management classes and to debug problems when they occur, one

must understand the basic reference-counting approach being used. Basic reference counting with smart

pointers is well established in the C++ literature [25] but a basic overview and specific details about the

approach used in the Teuchos memory management classes is appropriate to describe here. Of equal

importance is to describe how the reference-counting infrastructure can be used to address some boundary

cases that can help solve some fundamental problems with reference counting.

The basic reference counting machinery being used by the classes is first described. Next, the issue of

circular references and weak pointers are discussed.

5.9.1 Basic reference counting machinery

The foundation for the reference-counting machinery used by all of the reference-counting classes is shown

in Figure 4 (UML class diagram). The class RCPNode is an abstract base class that contains two different

reference counts (a strong count and a weak count) and inline functions for manipulating the counts as

efficiently as possible. The templated concrete subclass RCPNodeImpl is what actually stores the raw C++

pointer to the reference-counted object. This class is also templated on an deallocation policy object that

determines how the object is reclaimed. RCPNodeHandle is a simple handle class that automates the

manipulation of the reference counts by overloading the copy constructor and assignment operator

functions. This avoids having to replicate reference counting incrementing and decrementing in the

76

user-level classes RCP and ArrayRCP that contain it. All of the functions on RCPNodeHandle are inlined

and the only data members are a pointer to the underlying RCPNode object and a strength attribute (with

values RCP STRONG and RCP WEAK). The class RCPNodeHandle imparts zero space and time overhead and

removes all duplication in how the reference count node object is handled. In future UML diagrams, the

RCPNodeHandle class will be considered to be part of the owning RCP or ArrayRCP classes to avoid clutter.

The classes RCPNode, RCPNodeImpl, and RCPNodeHandle, are used unchanged for both the RCP and

ArrayRCP classes (however, only the RCP class is shown for simplicity).

The member functions for RCP and ArrayRCP related to reference-counting are shown in Listing 65.

Listing 65 : Reference counting member functions for RCP and ArrayRCP

template<class T>

class [Array]RCP {

public:

...

// Reference counting member functions

ERCPStrength strength() const;

bool is_valid_ptr() const;

int strong_count() const;

int weak_count() const;

int total_count() const;

void set_has_ownership();

bool has_ownership() const;

Ptr<T> release();

RCP<T> create_weak() const;

RCP<T> create_strong() const;

template<class T2> bool shares_resource(const RCP<T2>& r_ptr) const;

const RCP<T>& assert_not_null() const;

const RCP<T>& assert_valid_ptr() const;

...

};

Most of the functions in Listing 65 are never called by general clients except in desperate situations.

Notable exceptions are the member functions create weak() (which is used to create a WEAK RCP object

from a STRONG object) and and create strong() (which is used to create a STRONG RCP object from a

WEAK object). The function create weak() is used to break a circular reference as described in

Section 5.9.2 while create strong() is used in situations like the “object self-reference” idiom described

in Section 5.13.3.

Figure 4 also shows that every RCPNode object has an optional std::map object that can be used to store

and retrieve arbitrary extra data (represented as the any data-type which can handle any value-type object).

A raw pointer is stored to the extra data map object that is initialized to null by default. Therefore, if no

extra data is used, the only overhead for this feature is an extra pointer member and its initialization to null.

The motivation for and the usage of extra data is discussed in Section 5.9.5.

It is critical to understand that the foundation for sharing objects using reference counting is that only one

owning RCPNode object can exist for any object that is shared. Consider the code in Listing 66 that creates

the reference-counting objects shown in Figure 5. All of these RCP objects share the same RCPNode object.

77

Figure 5. Example of several RCP objects pointing to the same

RCPNodeImpl object.

Listing 66 : Example of setting up several RCP objects pointing to the same reference-counted object
shown in Figure 5.

RCP<C> c(new C);

RCP<B1> b1 = c;

RCP<B2> b2 = c;

RCP<A> a1 = c;

RCP<A> a2 = a.create_weak();

If the programmer follows the idioms described in Section 5.8 and outlined in Appendix A and

Appendix B, it will always be the case that only one reference-counting node object will exist for a given

reference-counted object. Exceptions to the one owning RCPNode object per reference-counted object

guideline are allowed to facilitate some more advanced use cases (see Section 5.13.1 for an example). As

mentioned earlier, the RCPNode object stores both a strong and a weak reference count. The strong and

weak reference counts are equal to the number of strong and weak RCP objects pointing to the single RCP

node object. When the strong count goes to zero, the underlying reference-counted object is destroyed but

the RCPNodeImpl object is not destroyed until the strong and weak counts both go to zero. The motivation

and the workings of strong versus weak reference counts is discussed in Section 5.9.2.

Finally, one of the key integrated debug-mode capabilities of the Teuchos reference-counting machinery is

the ability to trace the RCPNode objects that are created and destroyed and put them in a low-overhead

object database. The RCPNodeTracer class/object is a global singleton object that stores all of the RCPNode

objects in active use. An std::multimap object is used to store raw pointers to the RCPNode objects and

the multi-map is keyed by the void* address of the underlying reference-counted objects themselves.

Therefore, one can query to see if any RCPNode object already exists for a given object. The cost of this

query is O(log(n)) where n is the number of active RCPNode objects currently in use. Therefore, the cost of

node tracing quite scalable with the number of RCPNode objects in use. The current implementation

optionally relies on Boost code which provides some trickery for determining at compile-time if a type is

polymorphic or not and thereby allowing the use dynamic cast<const void*>(p) to determine the true

base address of any object (no matter if it uses virtual base classes and multiple inheritance or not). The

78

ability to trace active RCPNode objects and look them up based on an object’s address is critical for many

debug-mode runtime checking capabilities including: a) reporting objects involved in circular

dependencies after a program ends (see Section 5.11.2), b) detection of dangling references of non-owning

RCP objects (see Section 5.11.3), and c) detection of the creation of multiple owning RCPNode objects (see

Section 5.11.4).

Note that node tracing is only an optional debug-mode feature and is not required for the correct

functioning of the reference-counting machinery. In fact, the observable behavior of correct programs is

exactly the same whether debug-mode node tracing is enabled or not. For correct programs, the only

observable consequence of having node tracing enabled will be increased runtimes.

5.9.2 Circular references and weak pointers

The fundamental weakness of low-overhead reference counting as described in this paper and used in the

Teuchos (and boost and any other reference-counting) memory management classes is that there is no

bullet-proof way to address circular references that otherwise result in memory leaks. Because of possible

circular references, only system-level garbage-collection methods, such as implemented in languages like

Java and Python, can robustly clean up memory in every case of circular reference. As stated earlier, given

backward compatibility constraints, many existing C++ programs cannot be used with any C++

implementation that might implement garbage collection, not now or ever. A key issue is that many

programs require the side-effects of the deletion of objects as specific points in the program and changing

the time of deletion of the object (and the call of the destructor) would break the program.

To understand the problem with circular references, consider the code in Listing 67 which sets up a simple

circular reference between two objects.

Listing 67 : Setting up a simple circular reference between two objects

{

RCP<A> a = createA();

RCP b = createB();

a->set_B(b);

b->set_A(a);

RCP<ClientA> clientA = createClientA(a);

RCP<ClientB> clientB = createClientB(b);

...

}

// The A and B objects will not be deleted when the above code block ends!

The code fragment in Listing 67 sets up the objects in Figure 6 showing the circular reference. Here object

a contains an RCP pointing to object b, and object b contains an RCP pointing to object a. In this situation,

when ClientA and ClientB destroy their RCP objects pointing to the underlying a and b objects, the

reference counts will not go to zero because of the circular reference between a and b. This will result in a

memory leak that a tool like Valgrind or Purify should complain about. If lots of objects with circular

references are constantly being created and destroyed resulting in these types of memory leaks, then

obviously one has a problem and the system could run out of memory and bring the program down.

79

Figure 6. Simple circular reference between two objects.

When debug-mode node tracing is enabled and circular references exist, the reference-counting node

tracing machinery will print out the remaining RCPNode objects when it exists (see Section 5.11.2 for more

details).

While there is no completely general and bullet-proof way to address the circular reference problem, there

is a fairly simple and cheap approach supported by the Teuchos reference-counting machinery that

developers can use to effectively resolve circular references in most cases. The approach described here

supported by the Teuchos reference-counted classes is to exploit the concept of weak reference-counted

pointers. As shown in Figure 4, this is accomplished through a strength attribute with values STRONG and

WEAK. By default, all RCP objects are STRONG. When an RCP is STRONG, then the underlying ConcreteT

object is guaranteed to stay around. However, when the RCP is WEAK, the underlying ConcreteT can get

deleted when strong count goes to zero (by the deletion of other STRONG RCP objects).

So how can one deal with circular references like this? The answer in this case is to use a weak RCP to

break the circular reference as shown in Listing 68.

Listing 68 : Breaking a simple circular reference using a weak RCP

{

RCP<A> a = createA();

RCP b = createB();

a->set_B(b);

b->set_A(a.create_weak());

RCP<ClientA> clientA = createClientA(a);

RCP<ClientB> clientB = createClientB(b);

...

if (deleteClientAFirst)

clientA = null;

else

clientB = null;

80

Figure 7. Simple circular reference between two objects broken using

a WEAK RCP.

}

// Now all the objects will be deleted correctly no matter if

// clientA or clientB goes away first.

The object structure set up by the code in listing Listing 68 is depicted in Figure 7. With the weak pointer

in place, all of the objects will get destroyed when ClientA and ClientB remove their RCP objects, no

mater what order they remove them. The critical assumption is that the “useful” lifetime of a is a super-set

of the “useful” lifetime of b. If a gets deleted before b, then b had better not try to access a anymore!

However, the goal is that whoever gets deleted first (i.e. clientA or clientB), then the objects a and b will

also be deleted gracefully and not result in memory leaks.

In the next section, detailed scenarios are given for the deletion of the objects shown in Figure 7. This

information is important if one wants to understand exactly how the weak pointers can allow the objects to

be deleted correctly while still catching mistakes gracefully and avoiding undefined behavior. However,

this information is not critical to understand for basic usage of the classes.

Detailed scenarios for weak pointers and cicular references

Consider the scenario where the clientA object goes away first (i.e. deleteClientAFirst=true)

depicted in Figure 8 (UML communication diagram). This scenario is shown in two phases in two separate

UML communication diagrams in Figure 8 with the following steps:

a) ClientA goes away first

a.1) As rcpA2 goes away, it deincrements nodeA::strongCount from 1 to 0.

a.2) Since nodeA::weakCount > 0, then nodeA is not deleted but since nodeA::strongCount==0

the object a gets deleted.

81

a) ClientA goes away first

b) ClientB goes away second

Figure 8. Weak pointer scenario where ClientA is deleted first

82

a.3) As a is deleted, it deletes its RCP object rcpB1.

a.4) Since rcpB1 is a strong pointer, it deincrements nodeB::strongCount from 2 to 1. Therefore,

neither nodeB or b gets deleted at this point. NOTE: At this point, the object a has been deleted

and nodeA’s internal pointer has been set to NULL. If the b object tries to access a after this, it

will result in an exception being thrown in a debug build. In a non-debug build, any access of a

from b will result in undefined behavior (e.g. segfault).

b) ClientB goes away second

b.1) As clientB goes away, it takes rcpB2 with it. Since rcpB2 is a strong pointer, it deincrements

nodeB::strongCount from 1 to 0. Since nodeB::strongCount and nodeB::weakCount are

both 0 this results in nodeB being deleted.

b.2) As nodeB is being deleted, it deletes the b object.

b.3) As b is being deleted, it deletes its RCP object rcpA1.

b.4) With rcpA1 being deleted it reduces nodeA::weakCount from 1 to 0. Since

nodeA::strongCount and nodeA::weakCount are both 0, this results in nodeA being deleted.

Since the object a is already deleted, nothing more happens.

Now consider the scenario where the clientB object goes away first (i.e. deleteClientAFirst=false)

depicted in Figure 9 which involves the following steps:

a) ClientB goes away first

a.1) The clientB object goes away first and takes its RCP object rcpB2 with it. This reduces

nodeB::strongCount from 2 to 1. No other objects are deleted yet.

b) ClientA goes away second

b.1) When rcpA2 goes away, it deincrements nodeA::strongCount from 1 to 0. At this point,

since nodeA::weakCount > 0, the node is not deleted but the referenced object a is deleted.

b.2) The object a is deleted.

b.3) As a is deleted, it deletes its RCP object rcpB1.

b.4) As rcpB1 is deleted, it deincrements nodeB::strongCount from 1 to 0. Since

nodeB::weakCount==0, then nodeB is deleted.

b.5) As nodeB is deleted, it deletes the b object.

b.6) As b is deleted, it deletes its RCP object rcpA1. What is critical here is that b must not try to

access a which is already in the process of being deleted. If b were to try to access a as it is

being deleted, in debug mode an exception would be thrown. In non-debug mode, this would

result in undefined behavior (e.g. segfault). It is rare, however, that one object tries to access

another as they are deleted.

b.7) When rcpA1 is removed, it deincrements nodeA::weakCount from 1 to 0. Since

nodeA::strongCount is already 0, this results in nodeA being deleted. Since a is already in

the process of being deleted, nothing extra happens here.

83

a) ClientB goes away first

b) ClientA goes away second

Figure 9. Weak pointer scenario where ClientB is deleted first

84

Figure 10. Example of a circular chain involving many objects and

many classes.

What is especially interesting about the second scenario is how deleting the a object in Figure 9.b triggers a

chain reaction that causes the b object to be deleted which recursively causes the nodeA object to be

deleted, all in the call stack where the a object is being deleted. To accomplish this correctly, the

RCPNodeImpl::deleteObj() function has some special logic to avoid a double delete call being

performed on the reference-counted object.

Comparison to weak pointers in Boost

With respect the weak pointers, the Teuchos class RCP differs substantially from the Boost and therefore the

C++0x standard reference-counting classes. With the class RCP, the attribution of strong or weak is made at

runtime. This allows an external client to decide at runtime to make a’s reference to b weak or b’s reference

to a weak depending on the given circumstance. With the Boost and C++0x shared ptr class, one has to

use a separate class weak ptr to represent a weak pointer. The problem with the Boost approach then is

that one has to decide at compile time if a particular reference is going to be weak or strong. While there

are some cases where one can always assume the reference needs be weak (like in the self-reference case

described in Section 5.13.3), there are more complex cases where one cannot decide this so easily at

compile time. For example, if one were to use the shared ptr and weak ptr classes, one would have to

decide at compile time to make a’s reference or b’s reference weak. The decision one makes make might

work for one set of use cases that one currently knows about, but for more complex use cases not

discovered yet, one may need to switch it. In fact, in the same compiled program there may be some use

cases where a will be deleted before b and other use cases where b will be deleted before a. With the

classes shared ptr and weak ptr, this is impossible to handle (at least not without storing both smart

pointer types in each class A and B object and then using one or the other which is not very elegant or

efficient). The only argument for the compile-time approach used by Boost and C++0x is improved

performance in both speed and memory overhead but the results in Section 5.12.1 show that this extra

overhead is fairly minimal. Overall, the overhead induced by the flexible runtime approach to weak

pointers of the RCP class (and therefore also the ArrayRCP class) is well worth this small extra overhead.

Typically, the classes RCP and ArrayRCP are used to manage objects (or blocks of array data for ArrayRCP)

much larger than what is contained in the infrastructure for the reference-counting objects so the additional

memory overhead is usually insignificant as well.

85

Summary of circular references and weak pointers

While this section has focused on a simple example involving a circular reference between two classes and

two objects, in reality circular references typically involve many different objects and classes which may be

in very distant parts of the code base which make them very difficult to find by just examining the static

code or running the code in a debugger. For example, Figure 10 (UML object diagram) depicts a circular

reference involving eight objects. When the external someClient object removes its RCP<H> object, the

chain of objects from a to h will not be deleted which results in a memory leak. These types of chains of

circular references can be very difficult to track down and that is where the debug-mode runtime node

tracing described in more detail in Section 5.11.2 comes in most handy.

Section 5.11.3 describes how weak pointers are used in runtime debug checking for dangling

(non-persisting) references. Section 5.13.3 describes how weak pointers are used in dealing with object

self-references.

In summary, the Teuchos reference-counting machinery dynamically addresses both strong and weak

references and is a very powerful tool but to use it effectively, one needs to understand the basic semantics

for its use. The good news is that likely 90% of more casual developers who use the classes RCP and

ArrayRCP will never need to know the difference between a strong and weak reference and will by default

just use strong references. Weak references will get used under the hood for some debug-mode runtime

checking but they are totally transparent to client code and the programmer. It is only in cases of circular

references and with some more advanced idioms and design patterns (see Section 5.13.3 and Section 5.13.4

for examples) do typical programmers need to know anything about weak pointers.

5.9.3 Customized deallocators

The most common use of RCP is to manage the lifetime of objects allocated using operator new and

deallocated using operator delete (or new [] and delete [] for ArrayRCP). For these use cases, the

built-in behavior in RCP does exactly the right thing for this average case. However, there are situations

when one cannot simply call delete to deallocate an object.

Some examples of situations where something other than calling delete needs to be performed include

when:

1. Reference counts for objects are managed by requiring clients to explicitly call increment and

decrement functions: This situation occurs when using CORBA [19] and COM [10] for instance.

Such an approach is also presented in [25, Item 29] in the subsection “A Reference-Counting Base

Class”. In these protocols, deallocation occurs automatically behind the scenes when this other

reference count goes to zero and does not occur through an explicit call to operator delete as with

the default behavior for RCP.

2. Objects are managed by certain types of object databases: In some object databases, an object that is

grabbed from the database must be explicitly returned to the database in order to allow proper object

deletion to take place later.

3. A different reference-counted pointer class is used to initially get access to the managed object: For

example, suppose some piece of peer software works with boost::shared ptr (see [7])

86

referenced-counted objects while the resident software works with RCP objects. It then becomes

critical no object is deleted until all the clients using either of these smart pointer types remove their

references to this underlying object (i.e. by destroying their smart pointer objects or setting them to

null).

4. A C struct object is allocated and deallocated through explicit C function calls: Here, a C library

function must be called to deallocate the object (examples of this exist in unit test and library code).

There are many other additional situations where one cannot simply assume that calling operator delete is

used to release an object. The bottom line is that in order to be general, one must allow arbitrary policies to

be used to deallocate an object after clients are finished using the object.

Perhaps the key differentiating property between a flexible high quality reference-counted pointer

implementation and a poor implementation is the capability to allow the user to define an arbitrary

deallocator policy that defines exactly what it means to release a reference-counted object (or array of

objects). The reference-counted Teuchos classes RCP and ArrayRCP, as well as boost::shared ptr all

allow the client to specify a user-defined deallocation policy object when the first reference-counted object

is constructed.

The code associated with customized deallocation policies for RCP (which are also identical for ArrayRCP)

are shown in Listing 69.

Listing 69 : Declarations for customized deallocation policies for RCP

// Default decallocation policy for RCP

template<class T>

class DeallocDelete

{

public:

typedef T ptr_t;

void free(T* ptr) { if(ptr) delete ptr; }

};

// Other provided deallocation policy classes

template<class T> class DeallocNull { ... };

template<class T> class DeallocArrayDelete { ... };

template<class T> class DeallocFunctorDelete { ... };

template<class T> class DeallocFunctorHandleDelete { ... };

template<class T> class EmbeddedObjDealloc { ... };

template<class T>

class RCP {

public:

...

template<class Dealloc_T>

RCP(T* p, Dealloc_T dealloc, bool has_ownership);

...

};

// Non-member constructors for deallocators and extraction functions

87

template<class T, class Dealloc_T>

RCP<T> rcp(T* p, Dealloc_T dealloc, bool owns_mem);

template<class Dealloc_T, class T>

const Dealloc_T& get_dealloc(const RCP<T>& p);

template<class Dealloc_T, class T>

Dealloc_T& get_nonconst_dealloc(const RCP<T>& p);

template<class Dealloc_T, class T>

Ptr<const Dealloc_T> get_optional_dealloc(const RCP<T>& p);

template<class Dealloc_T, class T>

Ptr<Dealloc_T> get_optional_nonconst_dealloc(const RCP<T>& p);

All deallocator objects must support the typedef member ptr t and function member free(...). The

concept of a template policy interface (also called a function object [29, Section 18.4]) should hopefully be

familiar to semi-advanced users of the STL (part of the standard C++ library).

To demonstrate the use of a deallocator object, let us assume that the code must wrap objects of type A

managed by the object database shown in Listing 70.

Listing 70 : Example of a simple object database

class ObjectADB {

...

A& get(int id);

void release(int id);

...

};

In the object database in Listing 70, objects are accessed and released using an integer ID. How this ID is

specified and determined is not important here. Let us suppose that one wants to define an abstract factory

that returns objects of type A wrapped in RCP<A> objects using a database object of type ObjectADB shown

in Listing 70. For this abstract factory, objects of type A will be allocated from a list of ids given to the

factory. The outline of this abstract factory subclass is shown in Listing 71:

Listing 71 : Factory subclass that allocates new objects using an ObjectADB object

class ObjectADBFactory : public AbstractFactory<A> {

RCP<ObjectjADB> db_;

Array<int> ids_;

public:

ObjectADBFactory(const RCP<ObjectADB>& db, const ArrayView<const int>& ids)

: db_(db), ids_(ids) {}

RCP<A> create(); // Overridden from AbstractFactory

};

88

The above abstract factory subclass ObjectADBFactory inherits from a generic AbstractFactory base

class that defines a pure virtual method create(). In order to implement the create() function, a

deallocator class must be defined and used shown in Listing 72.

Listing 72 : Custom deallocator class for releasing objects managed by ObjectADB

class DeallocObjectADB

{

RCP<ObjectjADB> db_;

int id_;

public:

DeallocObjectADB(const RCP<ObjectjADB>& db, int id)

: db_(db), id_(id) {}

typedef A ptr_t;

void free(A* ptr) { db_->release(id_); }

};

Now one can define the implementation of the create() function override as shown in Listing 73.

Listing 73 : Implementation of the factory create function

RCP<A> ObjectADBFactory::create()

{

TEST_FOR_EXCEPTION(ids_.size()==0, std::runtime_error, "No ids are left!");

const int id = ids_.pop();

return rcp(&db_->get(id), DeallocObjectADB(db_, id), true);

}

The program in Listing 74 shows the use of the factory subclass ObjectADBFactory defined in

Listings 70, 71, 72, and 73.

Listing 74 : Example driver program that transparently uses the ObjectADBFactory class

int main()

{

// Create the object database and populate it (and save the ids)

RCP<ObjectADB> db;

Array<int> ids;

...

// Create the abstract factory object

ObjectADBFactory ftcy(db, ids());

// Create some A objects and use them

RCP<A> a_ptr1 = fcty.create();

...

return 0;

}

89

In the example program in Listing 74, all of the objects of type A are created and removed seamlessly

without the client code that interacts with RCP and AbstractFactory knowing anything about what is

going on under the hood.

Examples of other types of deallocators are given in the unit test suite for the RCP class.

5.9.4 Embedded objects

Support for customized template deallocator policy objects described in Section 5.9.3 turns out to be a

pretty flexible feature. The ability to embed any arbitrary object in the RCPNode object gives one an

efficient way to define a different deallocation policy that is invoked by the destructor on the object instead

of requiring an explicit deallocation policy object. In addition, one can also tack on any extra data desired

and embed it in the underlying RCPNodeImpl object. The only restriction is that one has to make the choice

of what to embed in the RCPNode object when the very first RCP object is created (which in turn creates the

concrete templated RCPNodeImpl object). If one wants the flexibility to embed other data in the underlying

RCPNode object after it has been created then the “extra data” feature needs to used which is described in

Section 5.9.5. The advantage of embedding objects in the deallocator in the RCPNodeImpl object is that it

can be quite a bit more efficient than using the “extra data” feature which requires more runtime-support

and greater overhead.

The functions that are used to embed objects when creating RCP objects and retrieve them again are shown

in Listing 75 (identical functions exist for the ArrayRCP class).

Listing 75 : Embedded object functions for RCP

template<class T, class Embedded>

RCP<T> rcpWithEmbeddedObjPreDestroy(T* p, const Embedded &embedded,

bool owns_mem=true);

template<class T, class Embedded>

RCP<T> rcpWithEmbeddedObjPostDestroy(T* p, const Embedded &embedded,

bool owns_mem=true);

template<class T, class Embedded>

RCP<T> rcpWithEmbeddedObj(T* p, const Embedded &embedded, bool owns_mem=true);

template<class TOrig, class Embedded, class T>

const Embedded& getEmbeddedObj(const RCP<T>& p);

template<class TOrig, class Embedded, class T>

Embedded& getNonconstEmbeddedObj(const RCP<T>& p);

template<class TOrig, class Embedded, class T>

Ptr<const Embedded> getOptionalEmbeddedObj(const RCP<T>& p);

template<class TOrig, class Embedded, class T>

Ptr<Embedded> getOptionalNonconstEmbeddedObj(const RCP<T>& p);

90

The embedded object functions in Listing 75 simply use the custom templated deallocator class

EmbeddedObjDealloc shown in Listing 76 along with the public deallocator functions in Listing 69.

Listing 76 : RCP Deallocator using an embedded object

template<class T, class Embedded, class Dealloc>

class EmbeddedObjDealloc

{

public:

typedef typename Dealloc::ptr_t ptr_t;

EmbeddedObjDealloc(

const Embedded &embedded, EPrePostDestruction prePostDestroy,

Dealloc dealloc

) : embedded_(embedded), prePostDestroy_(prePostDestroy), dealloc_(dealloc)

{}

void setObj(const Embedded &embedded) { embedded_ = embedded; }

const Embedded& getObj() const { return embedded_; }

Embedded& getNonconstObj() { return embedded_; }

void free(T* ptr)

{

if (prePostDestroy_ == PRE_DESTROY)

embedded_ = Embedded();

dealloc_.free(ptr);

if (prePostDestroy_ == POST_DESTROY)

embedded_ = Embedded();

}

private:

Embedded embedded_;

EPrePostDestruction prePostDestroy_;

Dealloc dealloc_;

EmbeddedObjDealloc(); // Not defined and not to be called!

};

The customized deallocator class in Listing 76 is then templated with DeallocDelete (see Listing 69) and

set by the non-member constructor functions in Listing 75. The distinction between pre- and post-destroy

can be critical depending on how the embedded data is used (many examples are given in this paper). In

most cases, the order the embedded object is reset to the default value is not important and therefore the

client would just use rcpWithEmbeddedObj(...) to set the embedded object (in which case it uses

post-destruction by default).

Typically, the embedded object will be some RCP such that when the embedded object is assigned to the

default state as in embedded = Embedded() then the destructor on that object will be called (which is

what happens when the strong count goes to zero with RCP). A simple example of embedding an RCP that

controls memory release is shown in Listing 77:

Listing 77 : A simple example of using embedded objects

RCP<A> a_ptr1(new A);

RCP<A> a_ptr2 = rcpWithEmbeddedObj(a_ptr1.getRawPtr(), a_rcp1, false);

91

What the code in Listing 77 does it is creates a new now-owning RCPNodeImpl object with an RCP object

embedded in it. This maintains the correct ownership semantics by resets the reference count in the new

RCPNodeImpl object. The use case shown in Listing 77 may look silly and trivial but it is the foundation

for several more advanced use cases (see Section 5.13.1 for a related example). As a result of this code, the

underlying A object will not be deleted until the RCPNodeImpl object associated with a ptr2, and all of the

RCP objects created from it, are destroyed. Even the above simple use case can be useful if one wants to be

able to use the reference count on RCP objects derived from a ptr2 to determine usage of the object by

other clients. There are concrete examples of this exact simple usage in production code.

A more general usage of embedded objects to perform arbitrary actions is demonstrated in the context of

the “generalized view” design pattern in Section 5.13.4.

5.9.5 Extra data

As mentioned in Section 5.9.1, the Teuchos reference-counting machinery supports storing and retrieving

arbitrary objects as extra data stored on the RCPNode object itself. The functions supporting extra data for

the RCP class are shown in Listing 78 (the functions for ArrayRCP are identical).

Listing 78 : RCP extra data functions

template<class T1, class T2>

void set_extra_data(const T1 &extra_data, const std::string& name,

const Ptr<RCP<T2> > &p, EPrePostDestruction destroy_when = POST_DESTROY,

bool force_unique = true);

template<class T1, class T2>

const T1& get_extra_data(const RCP<T2>& p, const std::string& name);

template<class T1, class T2>

T1& get_nonconst_extra_data(RCP<T2>& p, const std::string& name);

template<class T1, class T2>

Ptr<const T1> get_optional_extra_data(const RCP<T2>& p, const std::string& name);

template<class T1, class T2>

Ptr<T1> get_optional_nonconst_extra_data(RCP<T2>& p, const std::string& name);

Given the support for embedded objects described in Section 5.9.4, extra data rarely needs to be used.

Embedding and retrieving objects in the templated RCPNodeImpl object is more efficient that using the

more general std::map object and any wrapper that are used to implement the “extra data” feature and

therefore embedded objects should be used whenever possible instead of extra data. However, there are a

few key advantages to using extra data over embedded objects that may be worth the performance overhead

or using extra data may be the only way to address an issue and some examples include:

• One can associate new extra data after the RCPNode object is created. With embedded objects, one

can only select the data-type for the embedded object at the time when the first RCP object is created.

92

• One can retrieve data without having to know the concrete template types in the RCPNodeImpl

object. With extra data, one only needs to know the string name and the type of the extra data that

needs to be retrieved. With embedded objects, the original type of the underling reference-counted

object that is used to template the RCPNodeImpl class also needs to be known (to see this compare

the template arguments for the getEmbeddedObj(...) and get extra data(...)). If this type

changes (i.e. if the creating code changes the subclass implementation TOrig used), then this will

break client code that tries to retrieve the embedded object. Therefore, client code that retrieves

embedded object data is more fragile than code that retrieves extra data.

• One can completely change the deallocation policy at runtime after the RCPNode object has been

created. With embedded objects, the deallocation policy of a reference-counted object cannot be

changed after the initial RCPNodeImpl object has been created; with extra data it can.

To demonstrate the power and flexibility of extra data, let’s consider a (perhaps unlikely) scenario where

some piece of code incorrectly associates the wrong deallocation policy to an allocated object shown in

Listing 79.

Listing 79 : Example of incorrect deallocator

RCP<A> createRCPWithBadDealloc()

{

return rcp(new A[1]); // Will use delete but should use delete []!

}

Hopefully no one would write code like is shown in Listing 79 (but shockingly I did once write code

similar to this). However, let’s suppose that one has to use the function createRCPWithBadDealloc() to

allocate A objects and are stuck with a pre-compiled library and one cannot access the source code to fix the

problem. On most systems an error like this will be tolerated and not cause problems but tools like

Valgrind and Purify will complain about code like this to no end and there may be some platforms where

this will actually cause the program to crash (since this has undefined behavior).

With RCP and extra data, one can replace the deallocation policy on the fly to use the correct policy. The

first step is to create a class that will call delete [] on the pointer correctly as shown in Listing 80.

Listing 80 : Deallocator class for extra data deallocation

template<typename T>

class DeallocArrayDeleteExtraData {

public:

static RCP<DeallocArrayDeleteExtraData<T> > create(T* ptr)

{ return rcp(new DeallocArrayDeleteExtraData(ptr)); }

˜DeallocArrayDeleteExtraData() { delete [] ptr_; }

private:

Ptr<T> ptr_;

DeallocArrayDeleteExtraData(T* ptr) : ptr_(ptr) {}

};

The client code can then fix the deallocation policy as shown in Listing 81.

93

Listing 81 : Using DeallocArrayDeleteExtraData as extra data to fix deallocation policy

// Create object with bad deallocator

RCP<A> a = createRCPWithBadDealloc();

// Disable default (incorrect) dealloc and set a new deallocation policy as extra data!

a.release();

set_extra_data(DeallocArrayDeleteExtraData<A>::create(a.getRawPtr()),

"dealloc", inOutArg(a));

The kind of flexibility shown in the above example is not possible using embedded objects and is not

possible with classes like boost:shared ptr. There are numerous other uses for extra data to fix nasty

memory management problems (which is why the extra data feature was added in the first place). However,

in well designed software, there is no need for a feature like this so a developer should count themselves

lucky if they never need to use the extra data feature.

5.10 Roles and responsibilities for persisting associations: factories and clients

There are two fundamentally different sets of actors that play two different roles in the use of the

reference-counted classes used for persisting associations: a) factory entities that first create the

reference-counted object RCP<A> and defines the deallocation policy, and b) general clients that accept and

use a shared reference-counted object A through an RCP<A> object.

Factory entities first create the reference-counted object (or array) and construct the first RCP (or

ArrayRCP) object containing it. The most basic type of factories are non-member constructor functions

described in Section 5.8.1. When the first RCP object is created, the factory gets to decide exactly how

object (or array) will be released when the strong reference count goes to zero. The default behavior, of

course, is to just simply call delete (or delete [] for arrays) on the contained raw pointer. However, the

factory can also choose any arbitrary action imaginable to occur when the reference-count goes to zero.

This is set up using a template deallocator policy object as described in Section 5.9.3.

Alternatively, the responsibilities of general clients that use and share a reference-counted object are very

simple and these responsibilities are:

• Accept the persisting relationship for a shared reference-counted object through an RCP object (or

ArrayRCP for arrays) as described in Section 5.8.4.

• Share the reference-counted object with other clients by creating a copy of one’s RCP (or ArrayRCP)

object and giving it to them.

• When one is finished using the object, simply delete or set to null all of one’s RCP objects. If some

other client is still using the object, it will remain alive. If the client’s is the last (strong) reference,

then the deallocator policy object that is embedded in the underlying RCPNodeImpl object is invoked

which knows exactly how to clean up and reclaim the underlying object (or array of memory).

That is all there is to it. Factories create the underlying object(s) wrapped in the first RCP object and define

how the referenced object(s) will be reclaimed when it is time to do so. General clients just accept and

94

maintain their references to shared objects (or arrays) by accepting and storing RCP objects (or ArrayRCP

objects) and then setting them to null when they are finished using the object(s).

5.11 Debug-mode runtime checking

The primary reason that these Teuchos memory management classes need to be developed in tandem with

each other and know each other’s internal implementations to some extend is to be able to implement

robust and effective debug-mode runtime checking. The debug-mode runtime testing that is built into these

classes is very strong and will catch nearly every type of programmer error that is possible, as long as raw

C++ pointers are never externally exposed and if raw C++ references are only used for persisting

associations. The different categories of debug-mode runtime testing are described in the following

subsections along with what the typical diagnostic error messages look like that are attached to exceptions

when they are thrown.

5.11.1 Detection of null dereferences and range checking

One of the most basic types of debug-mode runtime checking performed by the Teuchos memory

management classes are for attempts to dereference a null pointer and range checking of arrays and

iterators.

Listing 82 : Debug-mode null dereference checking (all types)

RCP<A> a_ptr; // Default constructs to null

A &a_ref = *a_ptr; // Throws!

a_ptr->someFunc(); // Throws!

ArrayRCP<int> aa; // Default constructs to null

a[0]; // Throws!

int &i_ref = *a.begin(); // Throws!

...

All of the Teuchos memory management classes throw on null dereferences. While most systems will abort

the program on null dereferences there are some platforms (e.g. some Intel C++ compilers) that will not

and it will result in memory errors that may not be seen until later in the program. Technically,

dereferencing a null pointer has undefined behavior and compilers and runtime systems can do anything

they want with undefined behavior (including corrupting memory and continuing as is the case with some

Intel C++ compilers).

The Teuchos array classes Array, ArrayView, ArrayRCP, and Tuple all perform array bounds checking in

debug-mode builds:

Listing 83 : Debug-mode array-bounds checking (all Teuchos array types)

Array<int> a(n);

a[-1]; // Throws!

a[n]; // Throws!

95

In a debug-mode build of the code, all the iterators returned by the begin() and end() functions of the

classes Array, ArrayView, ArrayRCP, and Tuple are of the type ArrayRCP which is a fully ranged

checked iterator.

Listing 84 : Debug-mode iterator range checking (all Teuchos array types)

Array<int> a(n);

*(a.begin()-1); // Throws!

*(a.begin() + a.size()); // Throws!

*a.end(); // Throws!

In addition, comparisons between iterators will thrown if they do not point into the same underlying

contiguous array of memory.

Listing 85 : Debug-mode iterator matching checking (all Teuchos array types)

ArrayRCP<int> a_arcp = arcp<int>(n);

Array<int> a(n);

// Simple mistake calling standard STL algorithm

std::copy(a.begin(), a_arcp.begin(), a_arcp.end()); // Throws!

These types of checks are fairly straightforward but are extremely useful and work on every platform. This

checking is built into programs automatically in a debug-mode build of the code. Contrast this to checked

STL implementations that may or may not exist on a given platform and if they do exist, the quality of the

implementations can vary widely. Note that in a non-debug build of the code, none of these checks are

performed which leads to the fastest code possible.

5.11.2 Detection of circular references

One of the more sophisticated types of debug-mode runtime checking supported by the Teuchos memory

management classes is the detection and reporting of circular RCP references that result in memory leaks.

The issue of circular references and the concept of weak pointers was outlined in Section 5.9.2. When

debug-mode node tracing is enabled, the reference-counting machinery keeps track of all the RCPNode

objects that are created and destroyed. If the program ends and there are one or more RCPNode objects that

are still remaining, then a error message is printed to std::cerr that gives all the details of the objects

involved in the circular reference.

For example, consider the simple circular reference created in Listing 67 and shown in Figure 6. If left this

way, when debug-mode node tracing is enabled, the program ends and prints an error message like the

following to std::cerr:

Listing 86 : Example error message printed after a program ends when there are unresolved strong
circular references

96

*** Warning! The following Teuchos::RCPNode objects were created but have

*** not been destroyed yet. A memory checking tool may complain that these

*** objects are not destroyed correctly.

*** There can be many possible reasons that this might occur including:

*** a) The program called abort() or exit() before main() was finished.

*** All of the objects that would have been freed through destructors

*** are not freed but some compilers (e.g. GCC) will still call the

*** destructors on static objects (which is what causes this message

*** to be printed).

*** b) The program is using raw new/delete to manage some objects and

*** delete was not called correctly and the objects not deleted hold

*** other objects through reference-counted pointers.

*** c) This may be an indication that these objects may be involved in

*** a circular dependency of reference-counted managed objects.

0: RCPNode (map_key_void_ptr=0x4a3ff50)

Information = {T=A, ConcreteT=A, p=0x4a3ff50, has_ownership=1}

RCPNode address = 0x4a3ffa8

insertionNumber = 23

1: RCPNode (map_key_void_ptr=0x4a40548)

Information = {T=B, ConcreteT=B, p=0x4a40548, has_ownership=1}

RCPNode address = 0x4a405f0

insertionNumber = 24

NOTE: To debug issues, open a debugger, and set a break point in the function where the

the RCPNode object is first created to determine the context where the object first

gets created. Each RCPNode object is given a unique insertionNumber to allow setting

breakpoints in the code. For example, in GDB one can perform:

1) Open the debugger (GDB) and run the program again to get updated object addresses

2) Set a breakpoint in the RCPNode insertion routine when the desired RCPNode is first

inserted. In GDB, to break when the RCPNode with insertionNumber==3 is added, do:

(gdb) b ’Teuchos::RCPNodeTracer::addNewRCPNode([TAB] [ENTER]

(gdb) cond 1 insertionNumber==3 [ENTER]

3) Run the program in the debugger. In GDB, do:

(gdb) run [ENTER]

4) Examine the call stack when the prgoram breaks in the function addNewRCPNode(...)

This error message is enough information to allow one to open a debugger, and set a break-point in the

function RCPNodeTracer::addNewRCPNode(...) and then examine where these objects are getting

created that result in the circular reference (see Section 5.11.7).

97

Note that in reality, the circular references will involve many objects (sometimes more than a dozen as

shown in Figure 10) and therefore this output will contain many RCPNode objects. A program may also

contain large numbers of smaller sets of circular dependencies. One example in Trilinos had a test that

generated hundreds of thousands of smaller circular cycles and leaked memory from hundreds of thousands

of objects.

5.11.3 Detection of dangling references

Another useful and necessary form of debug-mode runtime checking involves the detection and reporting of

access to invalid objects and arrays made through dangling references. A dangling reference is a catch-all

term that refers to any pointer or reference that points to a no-longer valid object or array. For example, the

following code fragment shows invalid access to a dangling iterator to an array that has changed shape:

Listing 87 : Example of a dangling iterator

Array<int> a(n);

Array<int>::iterator itr = a.begin();

a.resize(0);

*itr = 1; // Invalid access of dangling iterator (throws)!

In debug-mode, the above example would result in an exception being thrown with an error message like

shown below:

Listing 88 : Example of a dangling reference error message

Teuchos_RCPNode.hpp:515:

Throw number = 3

Throw test that evaluated to true: true

Error, an attempt has been made to dereference the underlying object

from a weak smart pointer object where the underling object has already

been deleted since the strong count has already gone to zero.

Context information:

RCP type: Teuchos::ArrayRCP<int>

RCP address: 0x7fbfffec98

RCPNode type: Teuchos::RCPNodeTmpl<int,

Teuchos::EmbeddedObjDealloc<int,

Teuchos::RCP<__gnu_debug_def::vector<int, std::allocator<int> > >,

Teuchos::DeallocArrayDelete<int> > >

RCPNode address: 0xab65a0

insertionNumber: 5

RCP ptr address: 0xab4c50

Concrete ptr address: 0xab4c50

NOTE: To debug issues, open a debugger, and set a break point in the function where the

98

the RCPNode object is first created to determine the context where the object first

gets created. ...

The erorr message shown in Listing 88 contains all the information needed to open a debugger, run the

program again to create new pointer addresses, set up breakpoints and break conditions, and debug the

problem. Breakpoints can be set when the RCPNode object is first created and inserted and also when the

exception is thown (see Section 5.11.7). The NOTE at the bottom of the error message in Listing 88 is

really the same as shown in Listing 86 and is only cut off to save space.

A few other examples of dangling references are shown in Listings 89–90.

Listing 89 : Example of a dangling ArrayView

ArrayView<int> av;

{

Array<int> a(n);

av = a;

}

av[0] = 1; // Invalid access to dangling ArrayView (throws)

Listing 90 : Example of a dangling Ptr

Ptr<A> a_ptr;

{

RCP<A> a_rcp = createA();

a_ptr = a_rcp.ptr();

}

a_ptr->someFunction(); // Invalid access to dangling Ptr (throws)

In general, Ptr, ArrayView and iterators (returned from the begin() member functions) all can be

involved in dangling references. Therefore, anytime a Ptr, ArrayView, or iterator object is created from

some other Teuchos memory management object, one can expect that in a debug build that dangling

references will checked for and if detected will result in exceptions being thrown with very detailed error

messages like shown in Listing 88.

Note that the ability to detect a dangling ArrayView of an Array object as shown in Listing 89 is due to the

fact that the debug-mode internal implementation of Array is designed to support this. Compare this to

ArrayView views of std::vector, as shown in Listing 91 where dangling references cannot be detected.

Listing 91 : Dangling ArrayView of std::vector (cannot detect dangling references)

ArrayView<int> av;

{

std::vector<int> v(n);

av = v;

}

av[0] = 1; // Invalid access to dangling ArrayView (does *not* throw)

99

The code in Listing 91 has undefined behavior and will most likely segfault if one is lucky. If unlucky, the

program may actually appear to run correctly on the main development and testing platforms and it will not

be until moved to a production platform that the ill-effects of this erroneous code will be seen. This is one

example of why it is so important to use Array instead of raw std::vector objects. Strong debug-mode

runtime checking of ArrayView views are not possible when using std::vector.

Another type of more sophisticated debug-mode dangling reference detection involves non-owning RCP

objects to existing reference-counted objects. Consider code like shown in Listing 92.

Listing 92 : Example of a dangling non-owning RCP object detected through node tracing

RCP<A> a_rcp = createA();

A &a_ref = *a_rcp;

RCP<A> a_rcp2 = rcpFromRef(a_ref); // Same as rcp(a_ref.getRawPtr(), false)

a_rcp = null; // The ’A’ object gets deleted (a_rcp2 is a dangling pointer)

a_rcp2->someFunction(); // Invalid reference to deleted ’A’ object (throws)

In a debug-mode build with node tracing turned on, the dangling non-owning RCP reference a rcp2 in

Listing 92 will be caught by the system. This works because the statement rcpFromRef(a ref) results in

a call to RCPNodeTracer::getExistingRCPNode(...) to look-up the existing RCPNode object that

points to the same A object. In this case, the existing RCPNode object is found and it is used to create a

weak RCP object (see Section 5.9.2) that can then detect if the original reference-counted object has been

deleted. Again, this more sophisticated type of debug-mode runtime checking requires that node tracing be

enabled12.

Debug-mode runtime detection and reporting of dangling references is built on the foundation of weak RCP

and ArrayRCP objects. Basically, all non-persisting views use a weak RCP or ArrayRCP object (see

Section 5.9.2) internally to allow the parent object to be changed or be deleted and to detect this if a client

tries to access the now invalid object through the dangling reference.

5.11.4 Detection of multiple owning RCP objects

There are other types of invalid usage that can be detected and caught in debug-mode with node tracing

enabled. Consider, for example, what happens when one or more of the commandments in Appendix B are

broken and more than one owning RCPNode object is created pointing to the same underlying ConcreteT

object as shown in Figure 11 generated by the sloppy code shown in Listing 93.

Listing 93 : Invalid creation of dual owning RCPNodeImpl objects (shown in Figure 11)

C *c_raw_ptr = new C;

RCP<C> c_ptr(c_raw_ptr);

12In order to handle multiple inheritance and virtual bases classes and still get the correct base object address, Boost support

must also be configured which is needed to use boost::is polymorphic to allow the use of dynamic cast<void*>(...) to

determine the true base address of a polymorphic object. Otherwise, without this, the system will not be able to determine if two

abstract interfaces really point to the same object and therefore the look-up of the RCPNode object may fail to detect when two

addresses are pointing to the same object.

100

Figure 11. Example of duplicate owning RCPNodeImpl objects

RCP<A> a_ptr1 = c_ptr;

...

A *a_raw_ptr = c_raw_ptr;

RCP<A> a_ptr2(a_raw_ptr);

The problem is that the two RCPNodeImpl objects generated by Listing 93 (shown in Figure 11) do not

know about each other and the first one who has its strong reference count go to zero will result in the

underlying C object being deleted. In this case, the other remaining RCPNodeImpl object, and all of the

resulting RCP objects pointing to it will be left with a non-null pointer to a now deleted C object. If the

client tries to access the underlying object through one of these now invalid references, it will yield

undefined behavior and will likely result in a segfault (if one is lucky). Also, a second call to delete will

also occur even if invalid access is not performed.

Not to fear, in a debug-mode build with node tracing enabled, the RCPNodeTracing object automatically

detects the creation of the second owning RCPNodeImpl<A> object and will thrown an exception with an

error message that looks something like Listing 94.

Listing 94 : Example of an error message from a the attempt to create dual owning RCPNodeImpl
objects

Trilinos/packages/teuchos/src/Teuchos_RCPNode.cpp:240:

Throw number = 1

Throw test that evaluated to true: rcp_node_already_exists && rcp_node->has_ownership()

RCPNodeTracer::addNewRCPNode(rcp_node): Error, the client is trying to create a new

RCPNode object to an existing managed object in another RCPNode:

New RCPNode {address=0x9cb3e0, base_obj_map_key_void_ptr=0x9cac40,

base_obj_type_name=A, map_key_void_ptr=0x9cac40, has_ownership=1, insertionNumber=6}

Existing RCPNode {address=0x9cb2b0, base_obj_map_key_void_ptr=0x9cac40,

base_obj_type_name=C, map_key_void_ptr=0x9cac40, has_ownership=1, insertionNumber=5}

101

Number current nodes = 6

This may indicate that the user might be trying to create a weak RCP to an existing

object but forgot make it non-ownning. Perhaps they meant to use rcpFromRef(...)

or an equivalent function?

NOTE: To debug issues, open a debugger, and set a break point in the function where the

the RCPNode object is first created to determine the context where the object first

gets created. ...

A debugger can be opened, a break-point can be set in the function TestForException break(...), and

the program can be run again and break at the time the exception is thrown to see the context under which

the second illegal RCPNode is created (see Section 5.11.7). A breakpoint can also be set in the function

addNewRCPNode(...) to see when the other RCPNode object was created (see Section 5.11.7).

If one is willing to pay for a little extra overhead of RCPNode tracing (see Section 5.12.1 for some timing

results of the overhead), then node tracing will detect the erroneous creation of multiple owning RCPNode

objects and respond in a graceful way. Note that creating multiple non-owning RCPNode objects is okay

and is allowed both when node tracing is enabled and when it is not enabled (however, see

Commandment 5 in Appendix B for restrictions on the creation of owning and non-owning RCP objects).

5.11.5 Performance of debug-mode checking versus memory checking tools

One of the common criticisms of debug-mode runtime checking is that it incurs an unacceptably large

runtime overhead. However, this overhead is only incurred for debug-mode builds and does not affect

non-debug optimized builds. To speed up debug-mode runtime checking, one can compile with optimized

compiler options (e.g. -O3) which significantly speeds up the code. Also, one has to consider the relative

cost of built-in debug-mode runtime checking versus running a memory checking tool like Valgrind or

Purify.

To investigate the cost of debug-mode runtime checking, the Trilinos package Tpetra13 is used since it

relies the Teuchos memory management classes at a very low level and therefore would be expected to

show the largest runtime overhead for debug-mode checking. Table 16 shows the runtime of the Tpetra

serial test suite (12 test programs) for several different build and runtime configurations. In all of these

builds, optimized compiler options (-O3) were used. All of these timing tests were performed on an a

3.2GHz AMD machine with 8 cores running Linux 2.6.9-78.0.1.ELsmp using GCC 3.4.6. Valgrind tests

were run using version 3.2.1. All of the test executables were run in serial on the unloaded Linux machine.

The results in Table 16 give the total runtimes as well as the relative runtimes for debug-mode checking

and Valgrind. The second column ‘Runtime’ gives the raw CPU time in seconds (as reported by CTest) for

all 12 test executables in the Tpetra test suite. The third column ‘Multiplier’ gives the ratio of the runtime

relative to the base-line optimized build case. The fourth column ‘Valgrind Multi’ gives the fractional

increase in the runtime of the test suite run with Valgrind relative to running the same executables without

Valgrind.

The results in Table 16 show that while the cost incurred by debug-mode runtime checking can be

13http://trilinos.sandia.gov/packages/tpetra/

102

Configuration Runtime (sec) Multiplier Valgrind Mult

1) Optimized build (base-line) 0.16 1.0 -

2) Debug-mode runtime checking 0.49 3.1 -

3) Debug-mode runtime checking + node tracing 1.08 6.8 -

4) Valgrind optimized build 56.21 351.3 351.3

5) Valgrind debug-mode runtime checking 214.01 1337.6 431.5

6) Valgrind debug-mode runtime checking + node tracing 378.54 2365.9 347.9

Table 16. Overhead of runtime checking for serial Tpetra test suite.

significant (a factor of 3.1 for basic debug-mode runtime checking) it is still quite reasonable. When node

tracing is enabled, the cost more than doubles to a factor of 6.8 times the basic optimized build. While the

cost of full debug-mode runtime checking with node tracing is a factor of 6.8 over the basic optimized

build, the cost of running with Valgrind is a factor of over 300! The increased cost of running Valgrind is a

factor of 431.5 for the basic debug-mode executables. A factor of 300 can make running a tool like

Valgrind prohibitive for even moderate sized problems while a factor of 6.8 may be quite reasonable. For

example, a test problem that takes 20 minutes to run in a standard optimized build may take 2 hours 15

minutes to run with full debug-mode runtime checking with node tracing enabled but that same program

may take 100 hours (i.e. more than 4 days) to run with Valgrind! Also, as has been mentioned several times

before, in some respects the level of runtime checking provided by Teuchos in a debug-mode build is more

effective that what one gets with just Valgrind14. In order to perform the most detailed runtime checking

possible, one can run with Valgrind with debug-mode runtime checking with node tracing enabled.

However, the overhead of this maximal checking is staggering at more than 23,000 times the cost of the

basic optimized build! With this level of overhead, only very small test problems can be run.

What these timing results suggest is that the cost of debug-mode runtime checking for programs using the

Teuchos memory management classes will be less than a factor of 10 more than the basic optimized build

in the worst case while the overhead of running a tool like Valgrind can be as much as a factor of 400 or

more. This means that enabling debug-mode runtime checking in regular development and automated

testing is quite reasonable. Note that the Tpetra package used in this example is likely an extreme case in

the usage of the Teuchos memory management classes. Other types of software that don’t use the Teuchos

memory management classes for such low-level computations will see much less of a slow-down.

However, note that theses tests were only performed on one machine using one compiler so results on other

platforms using different compilers may vary significantly.

5.11.6 Limitations of debug-mode runtime checking

Once memory is dynamically allocated and owned by one of the Teuchos memory management class

objects, the debug-mode runtime checking will catch every imaginable type of programming error as long

as a raw C++ pointer or raw C++ reference is not exposed. If all the idioms and rules outlined in this paper

are followed, then the only issue the developer will have to address that is not 100% obvious are circular

references. However, if programmers never made any mistakes, there would be no need for debug-mode

14However, Valgrind does perform a number of other types of checks including usage of uninitialized memory that are very

useful and cannot be duplicated by the Teuchos memory management classes.

103

runtime testing in the first place. While the level of debug-mode runtime testing implemented in the

Teuchos memory management classes is unmatched, code that converts from raw pointers (and raw

references) to Teuchos memory management objects and vice versa is vulnerable to programming errors

that the debug-mode runtime checking cannot catch.

The first category of programming errors that cannot be detected involve some types of conversions of raw

pointers (and raw references) to Teuchos memory management objects. However, before discussing

situations where the debug-mode runtime checking will not catch errors, first note that if an object is

dynamically allocated and is immediately given over to a strong owning RCP object (or an ArrayRCP object

in the case of arrays) then many different types of bad conversions from raw pointers (and raw references)

to memory management types will be caught. That is because when an object’s address is associated with a

strong owning RCP, it gets added to the debug-mode RCPNode tracing system discussed in Section 5.9.1.

Given this tracking, future conversions from a raw pointer or raw reference to a Teuchos memory

management class object that result in multiple owning RCPs or dangling references from Ptrs and

non-owning RCPs will all be detected and cleanly reported (see Sections 5.11.3 and 5.11.4). One way to

guarantee this is to require that a classes’ objects be dynamically allocated through its non-member

constructors (Section 5.8.1) which returned the new objects wrapped in strong owning RCPs. In this way,

the object is immediately tracked under the debug-mode node tracing system.

However, not every class can or should employ the non-member constructor idiom to force the creation of

strong owning RCP objects. In particular, value-type classes (Section 4.1) such as std::vector and

Teuchos::Array must be allowed to be generally constructed on the stack or globally but one still needs

to be able to dynamically allocate them in many different situations. The downside to allowing value-type

class objects to be dynamically allocated and managed with RCP is that it allows client code to try to create

an owning RCP to a stack (or otherwise non-dynamically) allocated object which the debug-mode runtime

checking will not be able to detect as shown, for example, in Listing 95.

Listing 95 : Example where debug-mode checking cannot detect an erroneous delete issue

{

std::vector<int> vec(n);

const RCP<std::vector<int> > vec_rcp(&vec); // Gives ownership to delete!

...

// When vec_rcp is destroyed it will call delete on the address &vec

// resulting in undefined behavior (e.g.\ segfault)!

}

In this case, the owing RCP<std::vector<int> > object will try to call delete on the address &vec at the

end of the block which will result in undefined behavior (e.g. segfault). The lack of debug-mode checking

shown in Listing 95 is unfortunate but it is very hard to detect if an address is for a dynamically allocated

object where it is okay to call delete15. Note that the code in this example violates Commandment 4 in

Appendix B that states that owning RCP (and ArrayRCP) objects should only be created by passing in the

address directly returned from new (or new[] for ArrayRCP) unless a customized deallocation policy object

is attached which defines a more specialized dellocatioin policy. The good news though is that memory

checking tools like Valgrind and Purify usually do a good job of detecting and reporting erroneous calls to

15Perhaps in the future a portable library function can be written and used that will be able to detect the difference between a

stack address and a heap address so an exception can be thrown right when the bad owning RCP is first created.

104

delete (i.e. free(...)) that try to free stack-owned memory. But again if the idioms outlined in

Section 5.8 and the commandments defined in Appendix B are followed, this problem should never occur.

The other category of programming errors that the debug-mode runtime checking cannot detect and report

involves exposing and then misusing raw C++ pointers and references. As soon as client code exposes a

raw C++ pointer and starts copying it around, all bets are off. However, even if client code never exposes a

C++ pointer, one can still get into trouble. One unfortunate case involves the use of raw C++ references. If

raw C++ references are only used as formal arguments to C++ functions, one will almost never have a

problem. However, incorrectly returning an RCP object by reference instead of by value, as is described in

Section 5.8.5, can result in invalid C++ references. Also, if one uses references like in Listing 96, then one

can of course have dangling raw C++ references that the Teuchos debug-mode runtime checking can never

catch.

Listing 96 : Example of where holding on to a raw C++ references disables debug-mode runtime
checking

RCP<A> a_ptr = newA();

A &a = *a_ptr;

...

a->someFunc();

// This above object may not be valid anymore and may result in

// undefined behavior (a segfault)!

The code in Listing 96 violates the use of raw C++ references only for non-persisting associations. The

statement A &a = *a ptr results in the creation of a persisting relationship in that it extends past the

statement where it was created.

In summary, as soon as an object reference is exposed through a raw C++ pointer or a raw C++ reference,

in general the Teuchos debug-mode runtime checking can no longer detect errors. Therefore, never expose

a raw C++ pointer (except for the situations described in Section 5.2) and only expose and use raw C++

references for strictly non-persisting associations. Also, great care must be taken in first constructing

Teuchos memory management class objects such they have the correct memory management properties.

5.11.7 Exception handling and debugging

The debug-mode runtime checking performed by the Teuchos memory management classes throw

exceptions when violations are detected. As has been shown throughout this document, these exceptions

have associated messages that contain detailed information about the nature and context of the problem.

All exceptions thrown by the Teuchos memory management classes (and the rest of Trilinos for that

matter) all use a system of macros in the file Teuchos TestForException.hpp. All of these macros call

the function TestForException break(...) just before an exception is thrown. Therefore, if the error is

repeatable (and most errors are), then one can open a debugger (e.g. GDB) and set a break-point in that

function, run the program, and then examine the state of the program just as the exception is being thorwn.

Several exceptions can be thrown before the exception that one needs to debug. To make it easier to break

on the exception that one cares about, every exception message has a Thrown number associated with it

embedded in the error message of the exception object. One can set a conditional break-point in

105

TestForException break(...) to only stop when throwNumber has the right value. For example, if one

needs to stop on Throw number = 10, then in GDB one can set:

(gdb) b ’Teuchos::TestForException_break([TAB] [ENTER]

(gdb) cond 1 throwNumber==10

(gdb) run

When the program stops at this break-point, one can then examine the call stack to troubleshoot the

problem.

Many exception messages contain other types of information that would have one set breakpoints in other

functions. For example, a dangling reference exception (as shown in Section 5.11.3) would contain

addresses of objects that one would use to set conditional breakpoints. To examine the context under which

an RCPNode is first created, one would set a break-point in the function

Teuchos::RCPNodeTracer::addNewRCPNode(...) and set a condition to only break when

insertionNumber is the number printed in the exception message. For example, for the exception

message shown in Listing 88, one would set the break-point in GDB as:

(gdb) b ’Teuchos::RCPNodeTracer::addNewRCPNode [TAB] [ENTER]

(gdb) cond 1 insertionNumber==5

(gdb) run

When the debugger breaks, one would then be able to examine the call stack to see the context under which

this RCPNode object is first created.

NOTE: Setting breakpoints based on insertionNumber is generally better than trying to set breakpoints

based on the object addresses because the same address can get reused multiple times as objects are created

and destroyed. Only the insertionNumber uniquely identifies a particular RCPNode object. In builds

where node tracing is not enabled, insertionNumber will be equal to -1 and will not aid in debugging.

NOTE: Before entering a conditional break-point involving an address, one must first run the program

again in the debugger which will typically produce an exception message with different object addresses

because the debugger moves things around in memory. One will need to use these new pointer addresses

when setting conditional breakpoints.

The Teuchos reference-counting classes are all fully exception safe in that they provide either the basic

guarantee (retain some valid object state and no leaked memory when an exception is thrown), the strong

guarantee (retain original state when an exception is thrown), or the no-throw guarantee (see [31, Item 71]).

However, if exceptions are thrown from destructors when objects are being destroyed, then the

reference-counting classes are only fully exception safe in a debug-mode build. This does not really break

exception safety since destructors should not be throwing exceptions in most valid C++ programs (see [31,

Item 51]). The Teuchos memory management classes provide the foundation for allowing the wide-spread

and consistent use of C++ exception handling in all client code in such a way as memory will not be leaked

when exceptions are thrown. However, achieving a truly exception safe program means more than just not

leaking memory; it means that all code provides at least one of the fundamental exception guarantees

(again, see [31, Item 71]).

Note that throwing exceptions differs from what many other class libraries do which is typically to call

assert(...) when a runtime failure is discovered. For example, the checked STL for g++ will call assert

106

GCC 4.1.2: GNU GCC 4.1.2 (compiler options -O3 -DBOOST SP DISABLE THREADS) running under Linux

2.6.18-128.1.6.el5 on 2 Quad Intel Xeon CPUs at 2.93GHz and 4MB L1 Cache and 16 GB RAM.

ICC 10.1: Intel ICC C++ 10.1 (compiler options -O3 -DBOOST SP DISABLE THREADS) running under

Linux 2.6.18-128.1.6.el5 on 2 Quad Intel Xeon CPUs at 2.93GHz and 4MB L1 Cache and 16 GB

RAM.

MSVC++ 2008: Microsoft Visual C++ 2008 (compiler options /D SECURE SCL=0

/DBOOST SP DISABLE THREADS /Ox) running under Windows Vista Enterprise on an Intel Core 2

Duo CPU T9800 at 2.93GHz and 2.00 MB RAM.

Table 17. Performance testing platforms.

when a usage violation is discovered. There are pros and cons for throwing exceptions versus halting the

program but if code can be made exception safe, then one can argue that throwing exceptions is better

because it allows the program to recover in case of a catastrophic failure of a submodule while calling

assert(...) does not. Also, writing unit tests for code that throws exceptions is much easier and more

efficient than trying to write unit tests for code that halts the program. This issue of testability is a huge

advantage of exception handling over calling assert(...) or exit(...) when an error occurs.

5.12 Optimized performance

While debug-mode runtime checking is of great importance, of equal importance is speed in a optimized

non-debug build. It is critical in high performance code that the wise use of the Teuchos memory

management classes lead to optimized performance that is nearly identical to the performance of raw

pointers. Otherwise, if there is always a performance gap with using the Teuchos memory management

classes, then there will always be an excuse to go back to using raw pointers will all of the disastrous

consequences discussed in Section 1 and Section 2.

In this section, the optimized performance of the Teuchos memory management classes is analyzed. In an

optimized build, all of the runtime checking is disabled but there is still some non-trivial overhead

associated with the reference-counting machinery. If used at too fine a granularity, reference-counting

overhead can become a significant space/time performance problem on real-world problems.

The optimized performance of several different types of operations are examined in the next few sections.

All of these performance timing tests were run on three different compilers shown in Table 17 that

represent two mainstream platforms. The GCC 4.1.2 and Intel ICC 10.1 results where run on the same

Linux machine and therefore one can directly compare the optimizing capability of these two compilers on

this platform. Note that the processor used for the Microsoft Vista platform is also Intel and has the same

clock speed as for the Linux platform. Therefore, one can make fairly direct comparisons of runtimes

between the three different compilers. Timings on other compilers may give different results, especially for

compilers that have a bad history at optimizing C++ code (e.g. PGI, Sun, AIX etc.). All of these

performance timing tests are driven by a performance testing framework in Teuchos and there are nightly

performance tests that strictly enforce relative performance timing targets.

107

This section is broken up into subsections as follows. First, the optimized performance of the

reference-counting machinery is looked at in Section 5.12.1. Reference-counting overhead will never go to

zero with respect to raw pointers but it is constant-time overhead and therefore its impact can be minimized

by not applying it at too low a level. The optimized performance of the Teuchos array classes is given in

Section 5.12.2. The timing results show that the basic bracket operator (i.e. a[i]) and iterator (i.e.

a.begin()) access methods all yield raw pointer performance. Finally, in Section 5.12.3, performance

tuning strategies are discussed primarily addressing the issue of performance optimizations related to

semi-persisting associations.

5.12.1 Reference counting overhead

While the reference-counting machinery used by the RCP and ArrayRCP classes significantly improves

software development productivity and quality in many respects, it also has a certain amount of space and

time overhead that needs to be considered in design decisions. Here, the cost of the various operations

associated with the RCP class are compared to raw pointers and to the boost::shared ptr class. Timings

are performed for creating and destroying the RCPNode object and reference-counted object, for

manipulating the reference count, and for accessing the underlying reference-counted object. These are the

core operations of the RCP class that are most likely to affect performance.

All of the operations being timed are very low-level and therefore it is difficult to get meaningful unbiased

timing results. To get accurate timings, one must perform the operation in loop and average the times. With

naive code, some compilers (e.g. Microsoft Visual C++) will just optimize away the entire loop. Therefore,

the operation must be performed in the context of a loop over an array where the result of the loop gets

used in some way to accumulate a final result. Examples of these types of timing loops will be given below.

Because of the loop and iterator overhead and this extra (minimal) computation, the timings listed for each

operation are higher that what they would be otherwise. Therefore, the overhead reported is lower that

what it really is but by how much one cannot be sure. Also, when performing loops, issues of loop

initialization and cache issues come into play. In order to avoid these issues, a single loop size from all the

results of 1024 was selected to display in the figures and tables in this section. The raw timing results for

other loops sizes are given in Appendix D.1.

Note that the atomic thread-safe reference-counting machinary in boost::shared ptr was turned off in

order to get better timing comparisons. Preliminary timing studies showed that the assembler-optimized

atomic lock-free reference-counting machinary on Linux/GCC imparted about a 4x overhead. To avoid this

performance overhead, the assember code for atomic reference-count manipulation was disabled by

compiling with -DBOOST SP DISABLE THREADS. Issues of thead safety are briefly discussed in

Section 5.14.

The first type of overhead to consider is the memory overhead of the reference-counting machinery shown

in Figure 4. Table 18 shows the sizes of some important objects associated with RCP and

boost::shared ptr (on a 64 bit platform where pointers are 8 bytes). The sizes are shown for allocating

std::vector<double> objects but the memory used by the reference counting machinery only depends

on pointers so the memory usage overhead is the same no mater what type of object is used. From looking

at Table 18, one can see that the static size of std::vector<double> is 24 bytes for this compiler.

Consider allocating an std::vector<double> object with only one element. This would dynamically

allocate one double object in an array giving a total of 32 bytes. Now consider the reference-counting

machinery overhead. For every allocated std::vector<double> object, there is a reference-counting

108

Type sizeof(Type)

bool 1

double* 8

double 8

std::vector<double> 24

boost::shared ptr<std::vector<double> > 16

boost::detail::sp counted impl p<std::vector<double> > 32

RCP<std::vector<double> > 24

RCPNodeImpl<std::vector<double>, ... > 48

Table 18. Sizes of RCP and boost::shared ptr objects for 64 bit GCC

4.1.2.

node object of type RCPNodeImpl<std::vector<double>, ... > which is 48 bytes. In addition there

is also an RCP<std::vector<double> > object of size 24 bytes. That gives a total of 24+48=72 bytes of

reference-counting overhead to manage an object that only consumes 32 bytes. That is memory overhead

of 225%! However, when the std::vector<double> is allocated to hold 100 elements, the memory

consumed by the std::vector<double> object is 24+8*(100) = 824 bytes. Now the 72 bytes of

reference-counting overhead is only 8.7%. By the time one gets to 1000 elements, the overhead drops to

0.8%. The point is that the reference-counting machinery imparts a storage overhead that is non-trivial for

small objects. Therefore, RCP should not be used to manage large numbers small objects. Likewise,

ArrayRCP should not be used to manage large numbers of small arrays for the same reason.

Table 18 also shows the sizes of comparable objects associated with the boost::shared ptr class. The

boost sp counted impl p node object only consumes 32 bytes on this machine as apposed to the 48 bytes

for the RCPNodeImpl object. The increased overhead of the RCPNodeImpl object is due to the pointer for

the extra data map, an extra ownership Boolean, and storage of the deallocator object. Also, the

boost::shared ptr object itself only consumes 16 bytes while the equivalent RCP object uses 24 bytes.

This increase in storage is due to having to store a strength enum to dynamically handle STRONG and

WEAK references. This is the storage cost of increase flexibility of the RCP class over the

boost::shared ptr class.

Now consider the runtime overhead associated with dynamic allocation and deallocation. Figure 12 shows

the timings for dynamically allocating and deleting std::vector<double> objects for different numbers

of vector elements on the three compilers shown in Table 17. Figure 12.a shows the timings for allocating

std::vector<double> objects with only one element. This shows that there is some runtime overhead

needed to dynamically allocate new node objects for RCP. The extra overhead is due to an extra call to new

in order to allocate the node object. Note that the extra overhead for RCP is quite small with respect to

boost::shared ptr for all three compilers (because both classes do very similar things). However, this is

constant time overhead so as larger std::vector<double> objects are allocated (with associated

initialization of the vector elements in an inner loop) the relative overhead goes to zero, as shown in

Figure 12.b. Therefore, the runtime overhead of the reference-counting machinery for allocating and

deallocating large objects is very small.

Now consider timings for dereferencing using RCP::operator*(), member access through the arrow

operator RCP::operator->(), and assignment through RCP::operator=(...) (which changes the

109

Figure 12. Timings for allocating and deallocating objects using RCP

110

reference counts) shown in Figure 13. These timings are the average CPU time (in seconds) per inner loop

iteration (see Listing 97 for an example). These timing results show that dereferencing and member access

for RCP yield raw pointer performance on all the compilers because these member functions are trivially

inlined to expose the raw pointer.

The assignment operator, however, imposes significant overhead because of the need to increment and

deincrement the reference counts. The timing code fragment that exercises RCP::operator=(...) is

shown in Listing 97. (Note that std::vector is used instead of Array in Listing 97 in order to avoid

timing overhead that might result from a bad implementation of Array::operator[](...) that would

affect the timing results.)

Listing 97 : Performance timing loops for RCP::operator=(...)

{

RCP<char> p(new char(’n’));

std::vector<RCP<char> > p_vec(arraySize);

TEUCHOS_START_PERF_OUTPUT_TIMER_INNERLOOP(outputter, numActualLoops, arraySize)

{

for (int i=0; i < arraySize; ++i) {

p_vec[i] = p;

// NOTE: This assignment operation tests the copy constructor and

// the swap function. This calls both bind() and unbind()

// underneath.

}

}

}

TEUCHOS_END_PERF_OUTPUT_TIMER(outputter, rcpTime);

Timing results for the code in Listing 97 for numActualLoops=338498 and arraySize=1024 are shown in

Figure 13 along with similar timings for raw pointers and boost::shared ptr. The full timing results for

other sizes are show in in Appendix D.1.

Several interesting points to note about these timing results are described below.

First, the timing results for the simple raw-pointer loops shown in Figure 13 suggest that these two

machines have nearly identical processor speeds. Therefore, the CPU times on the Y-axis scale for each of

these compiler/machine bar charts is made the same to allow for absolute comparisons. This allows for

direct comparisons of the optimizing capabilities of these three compilers with respect to dealing with

general C++ code (and not just C-like raw pointer loops). This suggests that GCC 4.1.2 is better than the

rest and that MSVC++ 2008 is quite bad at optimizing general RCP C++ code.

Second, note that the cost of manipulating the reference count in RCP::operator=(...) is an order of

magnitude higher than the dereference and arrow operators which have raw-pointer performance. The real

overhead of manipulating the reference counts may not actually be this high due to the simple nature of the

raw pointer code run in a loop getting better optimization. The reference-count manipulation code involves

if statements that may disable certain loop optimizations.

Third, note that RCP::operator=(...) is about 30% slower on GCC 4.1.2 than for boost::shared ptr

due to the extra overhead of dynamically handling strong and weak reference counts. The overhead of RCP

over boost::shared ptr goes up to 50% on on ICC 10.1 and then falls off a cliff going up to 300% for

111

Figure 13. Timings of basic RCP operations on for three compilers

112

MSVC++ 2008. Clearly the MSVC++ compiler is not inlining the RCP functions as well in this case.

However, there may be compiler options that would cause the MSVC++ compiler to be more aggressive in

inlining but none could be found after a moderate level of experimentation.

Fourth, note that for GCC 4.1.2, the cost of manipulating the reference count (at 5.59-09 sec) is two

orders of magnitude less than the cost to allocate and deallocate an std::vector<double> object with

only one element (at 1.39-07 sec) and is three orders of magnitude less for 16384 elements (at 5.84-06

sec) as shown in Appendix D.1. Therefore, just the memory allocation overhead can dominate these other

costs in some cases. Also, if a large object is being used with expensive operations, then the

reference-counting overhead will be insignificant compared to using the object. Again, this argues that

classes like RCP should only be used to manage larger objects that have more expensive operations

associated with them. The same argument can be made that ArrayRCP should only be used for managing

larger arrays of data where the cost of loops over the data overwhelm the reference-counting costs.

Lastly, note that the RCP::operator=(...) implementation both deincrements and increments the

reference count while the copy constructor only has to increment the reference count. Therefore, we might

expect that the copy constructor would be about twice as fast as the assignment operator. The performance

of the copy constructor is not measured in a loop because it is hard write a loop that tests it without other

overhead. However, the fastest approach is to avoid the copy of the RCP objects at all by passing in constant

references to the RCP objects as formal function arguments which is advocated in Section 5.8.4.

5.12.2 Array access and iterator overhead

Another important type of performance (perhaps more important than the performance of RCP for handling

single objects) is the performance of the Teuchos array classes. In an optimized non-debug build these

classes must yield the same performance as using raw pointers or the performance of the application will

definitely be affected.

Performance timing experiments for the bracket operator operator[](size type) and iterators (returned

from the begin() and end() functions) were performed using simple timing loops. Unlike the

performance tests for RCP described in the previous section, timing array operations naturally lends

themselves to performance timings. The performance timing code fragments for the Array class are shown

in Listing 98 and 99. The timing loop code for raw pointers and the ArrayRCP and ArrayView classes are

nearly identical.

Listing 98 : Performance timing loops for Array::operator[](size type)

Teuchos::Array<double> a(arraySize);

TEUCHOS_START_PERF_OUTPUT_TIMER_INNERLOOP(outputter, numActualLoops, arraySize)

{

for (Ordinal i=0; i < arraySize; ++i)

a[i] = 0.0;

}

TEUCHOS_END_PERF_OUTPUT_TIMER(outputter, arrayTime);

Listing 99 : Performance timing loops for Array iterators

Teuchos::Array<double> a(arraySize);

113

TEUCHOS_START_PERF_OUTPUT_TIMER_INNERLOOP(outputter, numActualLoops, arraySize)

{

Teuchos::Array<double>::iterator a_itr = a.begin(), a_end = a.end();

for (; a_itr < a_end; ++a_itr)

*a_itr = 0.0;

}

TEUCHOS_END_PERF_OUTPUT_TIMER(outputter, arrayTime);

Figure 14 shows the CPU timings for operator[](size type) and iterators for the performance tests

with sizes numActualLoops=230574 and arraySize=1600. These timing results are fairly interesting and

there are a few important details to note.

First, the performance of the raw pointer iterator loops on all three platforms is almost identical. The CPU

time per inner loop iteration for the raw iterator form of the loop for all three compilers on the two different

Linux and Windows machines is about 3.5e-10 seconds. This suggests that the CPUs on these two

machines are nearly identical for low level operations. This therefore suggests that only the compilers that

result in different performance for the other operations. Because these processors appear to be giving the

same raw performance, the Y-axis scales on all the timing bar charts are made the same in Figure 14 to

allow for direct comparison between each of the platforms.

Second, the ICC 4.1.2 compiler does not optimize the GNU std::vector::iterator type16 as well as it

optimizes raw pointer iterator syntax. The GNU GCC 4.1.2 compiler itself does not even quite fully

optimize its own std::vector::iterator type!

Third, the ICC 4.12 compiler is not optimizing the array indexing form of the inner loops shown in

Listing 98 as well as the other two compilers even for the use of raw pointers. The performance is even

worse for the abstract data types std::vector, Array, ArrayRCP, and ArrayView.

Forth, for some reason the MSVC++ 2008 compiler is not optimizing the loop using

ArrayRCP::operator[](size type) as well as for the other array types. Several different compiler

options and variations on the ArrayRCP and performance timing code where experimented with without

any impact (except to make every operation slower). However, the performance timing loop using iterator

for ArrayRCP yield raw-pointer performance (not surprising given that ArrayRCP::iterator is just a raw

pointer in a non-debug build).

The take-away points from these timing results are that all compilers do not fully optimize the array

indexing form of the loops and only raw pointers used as iterators will yield the optimal performance. The

Teuchos array classes perform at least as well as std::vector and actually out-perform std::vector in

some cases. This is only because the Teuchos array classes use raw C++ pointers for iterators in an

optimized non-debug build while the GNU implementation std::vector uses a library-defined class.

5.12.3 Performance tuning strategies, semi-persisting associations

The timing results shown in the prior two sections lead to a few different conclusions related to

performance issues in the use of the Teuchos memory management types:

16The data-type for the optimized iterator for std::vector::iterator on GNU is not a raw pointer. Instead it is a library-

defined data type with all inline functions that should in theory be optimized as well as the raw pointer but not always.

114

Figure 14. Timings for basic Array, ArrayRCP, and ArrayView opera-

tions

115

• The reference-counting machinery of the RCP class imparts at least 72 bytes of overhead for every

reference-counted object (the overhead for ArrayRCP is slightly higher) and therefore RCP should not

be used to manage massive numbers of small objects, just from a memory usage standpoint.

Likewise, ArrayRCP should not be used to manage large collections of small arrays since the

memory overhead could be significant.

• The extra runtime overhead of reference-counting machinery does not significantly increase dynamic

memory allocation and deallocation runtime costs for moderately large objects.

• The runtime reference-counting overhead of RCP with respect to boost::shared ptr can vary from

as little as 30% on a good optimizing compiler (e.g. GCC 4.1.2) to as much as 300% or more on a

poor optimizing compiler (e.g. MSVC++ 2008). Therefore, if portable performance of is critical,

make sure and use the reference-counting types at as high a level of granularity as one can such that

it does not damage the quality of the software (i.e. safety, flexibility, usability, maintainability).

• The most portable way to achieve high performance in array operations is to use iterators on

ArrayRCP and ArrayView objects. The timing results on ICC 10.1 show that some compilers will

not even given optimize performance for std::vector::iterator! Also, all compilers do not

automatically fully optimize the array bracket form of an array-based loop so an iterator loop is the

only foolproof way to get the best optimized performance across platforms.

The performance tests described above show that the memory and runtime overhead of the

reference-counting machinery can be high when used with small cheap objects. Therefore, if the

reference-counted types RCP and ArrayRCP are used at too low a level of granularity, the overall

performance of the program may suffer and may use significantly more memory than it would with raw

pointers. In such low-level code, strictly adhering to the idioms described in Sections 5.8.4 and 5.8.5 with

respect to persisting relationships can significantly degrade performance. Therefore, in low-level

performance-critical code, the strict idioms related to persisting associations need to be relaxed or the

design must be changed to raise the level of granularity where the reference-counted types are used.

However, just because one cannot use RCP and ArrayRCP in every situration and still achieve high

performance does not mean that the code should hard-code the use ofraw pointers. Instead, Ptr can be

used instead of RCP and ArrayView can be used instead of ArrayRCP when the full semantics of persisting

relationships are not needed and instead only semi-persisting relationships are needed (see Section 4.2). By

using the types Ptr and ArrayView instead of raw pointers for all semi-persisting associations one still

gets all of the strong debug-mode runtime checking that is described in Section 5.11 (e.g. dangling

reference checking, null checking, range checking, etc.) yet these types remove all overhead over raw

pointers in a non-debug optimized build.

As an example, consider the design of a sparse matrix class that stores its data as compressed sparse rows

and allows access to the sparse rows. The client of the sparse matrix class would obtain handles to the

sparse row data, make modifications to it, and then release the handles. Performing all of these operations

in a single statement (as is strictly required for a non-persisting relationship as defined in Section 4.2) is

impractical. Therefore, the handles for the internal sparse row data represent a persisting relationship and

the strict interpretation of the idioms defined in Sections 5.8.4 and 5.8.5 would require the use of ArrayRCP

yielding the sparse matrix class interface shown in Listing 100.

Listing 100 : Sparse matrix class interface adhering to strict interpretation of idioms for persisting

relationships

116

class SparseMatrix {

public:

...

int getNumRows() const;

void getSparseRow(int rowId, const Ptr<ArrayRCP<double> > &values,

const Ptr<ArrayRCP<const int> > &colIds);

...

};

The SparseMatrix class shown in Listing 100 would be used as shown in Listing 101.

Listing 101 : Client code using ArrayRCP form of the SparseMatrix class

void zeroOutSparseMatrix(const Ptr<SparseMatrix> &M)

{

const int numRows = M->getNumRows();

for (int row_i = 0; row_i < numRows; ++row_i) {

ArrayRCP<double> values;

M->getSparseRow(row_i, outArg(values), null);

typedef ArrayRCP<double>::iterator itr_t;

for (itr_t itr = values.begin(); itr != values.end(); ++itr)

*itr = 0.0;

}

}

While the interface and the user code shown in Listing 101 strictly satisfies that safe and bullet-proof

idioms on persisting associations described in Section 5.8.4, the reference counting overhead (in memory

size and speed) of this code can be quite high if the rows are very sparse. Looking at code such as shown in

Listing 101 and similar use cases, it never seems reasonable that a client would grab ArrayRCP objects to

internal rows and expect to have the row data persist even if the matrix changed structure or was deleted.

Instead, one just needs to set up the infrastructure for semi-persisting associations to be able to detect those

types of invalid usage in a debug-mode build but yield high performance in an optimized build. Therefore,

it seems reasonable to replace ArrayRCP in SparseMatrix::getSparseRow(...) in Listing 100 with

ArrayView yielding the new SparseMatrix interface shown in Listing 102.

Listing 102 : Sparse matrix class interface using a semi-persisting association for row views for the sake

of performance

class SparseMatrix {

public:

...

int getNumRows() const;

void getSparseRow(int rowId, const Ptr<ArrayView<double> > &values,

const Ptr<ArrayView<const int> > &colIds);

...

};

The updated client code zeroing out the rows of the matrix would then look like Listing 103.

117

Listing 103 : Client code using ArrayView form of the SparseMatrix class with semi-persisting row

views

void zeroOutSparseMatrix(const Ptr<SparseMatrix> &M)

{

const int numRows = M->getNumRows();

for (int row_i = 0; row_i < numRows; ++row_i) {

ArrayView<double> values;

M->getSparseRow(row_i, outArg(values), null);

typedef ArrayView<double>::iterator itr_t;

for (itr_t itr = values.begin(); itr != values.end(); ++itr)

*itr = 0.0;

}

}

Now the client code in Listing 103 will have no reference-counting overhead in a non-debug optimized

build but in a debug-mode build, all invalid usage will be detected. For example, consider invalid code such

as shown Listing 104 where the client code tries to hold on to sparse row data after the matrix is deleted.

Listing 104 : Example of invalid usage of SparseMatrix leading to a dangling reference exception in

a debug-mode build

// Create and initialize the matrix

RCP<SparseMatrix> M = createSparseMatrix(...); // Non-member constructor

...

// Grab a sparse row to the matrix

ArrayView<double> values_row_0;

ArrayView<const int> colIds_row_0;

M->getSpaseRow(0, outArg(values_row_0), outArg(colIds_row_0));

// Delete the matrix (leaving dangling values_row_0 and colIds_row_0)

M = null;

// Try to access the row

ArrayView<double>::iterator

itr = values.begin(), // Throws exception in debug-mode build!

itr_end = values.end();

for (; itr != itr_end; ++itr)

*itr = 0.0;

As shown in Listing 104, using ArrayView allows programming errors to be detected in a debug-mode

build. If raw pointers would have been used, this dangling reference may not be detected right away. On

some platforms for some problem sizes, the program using raw pointers may seem to run just fine and

Valgrind may not complain (especially if sophisticated memory management is used inside the

SparseMatrix class). The error may not present itself until months or years later where it may do untold

harm.

Note that there may be some extreme cases where the overhead of an extra size data member in ArrayView

is too high. In these cases, one can instead use an iterator type such as Array::iterator or

118

ArrayRCP::iterator (depending on type of the underlying container class). In a debug-mode build, the

iterator objects will be fully checked ArrayRCP objects while in a non-debug optimized build, the iterators

will be raw pointers (or std::vector::iterator in the case of Array::iterator). This yields raw

pointer performance in a non-debug optimized build with no space or time overhead (because all the

objects actually are raw pointers in this case).

The point of this section is to acknowledge that there will be situations in low-level code where the strict

adherence to using reference-counted types RCP and ArrayRCP for persisting associations may not yield

acceptable performance and therefore one must instead provide for semi-persisting views. However, as

demonstrated above, the solution to the performance problem is not to fall back to using raw pointers but

instead to fall back on the non-reference-counted types Ptr and ArrayView (or Array[RCP]::iterator).

By using the types Ptr and ArrayView (or Array[RCP]::iterator), one maintains all the desirable

debug-mode runtime checking without any of the reference-counting overhead in a non-debug optimized

build. We can have our cake and eat it too!

5.13 Related idioms and design patterns

There are a number of important idioms related to the usage of the Teuchos memory management classes

and most specifically the RCP class. The power and flexibility of the reference-counting machinery built in

to the RCP class opens the door the a whole host of interesting idioms, a few of which are described in the

following subsections.

5.13.1 The inverted object ownership idiom

A rare situation that can occur is when one has an object that maintains an RCP to another object but one

wants to expose the second object and have it remember the first object; in other words, one wants to invert

the object ownership. To demonstrate, consider the two classes in Listing 105.

Listing 105 : Two classes where one maintains an RCP to the other

class A { ... };

RCP<A> createA(...);

class B {

public:

static RCP create(const RCP<A> &a) {return rcp(new B(a)); }

RCP<A> getA() { return a_; }

void unsetA() { a_ = null; }

...

private:

RCP<A> a_;

B(const RCP<A> &a) a_(a) {}

};

RCP createB(const RCP<A> &a) {return B::create(a);}

119

The class A in Listing 105 may involve some complex initialization or it may only be an abstract interface

with multiple subclasses. In either case, it may make sense to provide a factory function (or a set of such

functions) that creates and initializes a B object for different complex initializations of A objects such as the

example shown in Listing 106.

Listing 106 : A factory function that creates a B object wrapping a complex A object

RCP createBFactory(...)

{

// Complex initialization of A

RCP<A> a;

...

// Wrapped B

return createB(a);

}

Up to now, this is pretty standard code. The client would typically hold an RCP object and would

manage the lifetime of the A object implicitly wrapped in the B object.

However, now consider a rare use case where a client may only want to deal directly with the A object but

still maintain the B object for later use. There are a few approaches that one could try to implement this

inversion of RCP ownership but there is a way to enable this that is 100% bullet-proof without having to

change the existing A or B classes or any other code at all. The way to do this is to use the

rcpWithInvertedObjOwnership(...) function (defined in Listing 108) as shown in Listing 107.

Listing 107 : A factory function that returns an A object embedded with a B object (inverting the

ownership relationship)

RCP<A> createAFactory(...)

{

RCP b = createBFactory(...);

return rcpWithInvertedObjOwnership(b->getA(), b);

}

Listing 108 : Standard helper function implementing the “inverted object ownership” idiom

template<class T, class ParentT>

RCP<T> rcpWithInvertedObjOwnership(const RCP<T> &child, const RCP<ParentT> &parent)

{

typedef std::pair<RCP<T>, RCP<ParentT> > Pair_t;

return rcpWithEmbeddedObj(child.getRawPtr(), Pair_t(child, parent), false);

}

Without going into a lot of detail, what the code in Listings 107 and 108 accomplishes is that it defines a

new RCP<A> object with a new RCPNode object that uses the other existing RCP<A> and RCP objects to

define ownership and ensure that the underlying A and B objects do not go away until the last RCP<A> object

copied from the object returned by the function createAFactory(...) has gone away. The reason that

false is passed into the rcpWithEmbeddedObj(...) call is because it is the embedded objects RCP<A>

120

and RCP that define the deallocation and not the embedded deallocator (which calls delete). The

reason that both RCP<A> and RCP are passed as an embedded object (stored in an std::pair object) is

that one needs to make sure the A object does not get deleted in case some client calls the B::unsetA()

function.

Given this data-structure, another piece of code can then extract the underlying RCP object is shown in

Listing 109 which uses the standard Teuchos function getInvertedObjOwnershipParent(...) defined

in Listing 110.

Listing 109 : A function that extracts the B object from the A object

RCP extractBFromA(const RCP<A> &a)

{

return getInvertedObjOwnershipParent(a);

}

Listing 110 : Standard helper grabbing the inverted parent

template<class ParentT, class T>

RCP<ParentT> getInvertedObjOwnershipParent(const RCP<T> &invertedChild)

{

typedef std::pair<RCP<T>, RCP<ParentT> > Pair_t;

Pair_t pair = getEmbeddedObj<T, Pair_t>(invertedChild);

return pair.second;

}

That is all there is to it. This is not the sort of thing that one wants to expose to general clients but it can be

very handy to have this type of flexibility when implementing the guts of library code. The above example

shows the flexibility of these memory management classes and what some of the possibilities are if one

understands the underlying reference-counting machinery a little.

5.13.2 The separate construction and just-in-time initialization idioms

The “separate construction and initialization” and “just-in-time initialization” idioms described here are not

specific to the use of the Teuchos memory management classes but they do provide the basic foundation for

the next idiom described, the “object self-reference” idiom. To set up the context for the discussion,

consider a typical class design shown in Listing 111.

Listing 111 : Example of a typical C++ class that uses constructors for all initialization

class SomeClass : public SomeBaseClass {

int member1_;

double member2_;

RCP<A> a_;

RCP b_;

RCP<C> c_;

void finalInitialization() { ...} // Can’t call virtual functions on SomeBaseClass

121

public:

SomeClass(): member1_(1), member2_(5.0) {}

SomeClass(const RCP<A> &a) : member1_(1), member2_(5.0), a_(a)

{ finalInitialization(); }

SomeClass(const RCP &b) : member1_(1), member2_(5.0), b_(b)

{ finalInitialization(); }

SomeClass(const RCP<A> &a, const RCP &b, const int someValue)

: member1_(1), member2_(5.0), a_(a), b_(b)

{ c_ = createC(rcp(this, false), a, b, someValue);

finalInitialization(); }

RCP<A> get_A() { return a_; }

RCP get_B() { return b_; }

RCP<C> get_C() { return c_; }

void doSomeOperation(...) {...}

};

So what is wrong with the design of SomeClass in Listing 111? First, there is the duplication of default

values for member1 , member2 in all of the constructors. This makes it labor intensive and error-prone to

change the values later. Yes, one could create static constants of some type to be reused in all the

constructor initialization lists but one still has to list all of these arguments in every constructor17 .

The second problem with the class SomeClass that it cannot call any virtual functions in the base class

SomeBaseClass to help initialize its state in the constructors [31, Item 49].

The third problem with the design of SomeClass shown in Listing 111 is that the C object that is created in

the third constructor that takes A and B objects is not properly setting up a persisting relationship between

the C object and the SomeClass object. When this C object is exposed through the get C() member

function, this creates a dangerous situation where the SomeClass object may be deleted leaving a client

with a dangling RCP<C> object with no way for the reference-counting machinery described in Section 5.9

do detect the the problem. This issue will be discussed more in the context of the “object self-reference”

idiom in Section 5.13.3.

Lastly, the class SomeClass is inflexible in that it requires the client creating the SomeClass object to know

the concrete types of A and or B (which could be abstract interfaces in this example) right when the

SomeClass object is first created. This creates a three-way coupling between a) the client, with b) defining

the time when the SomeClass object is first created, and c) needing fully constructed A and B objects right

when SomeClass is first created. In complex programs, it is very hard and very constraining to have to

fully initialize a web interconnected objects before constructing downstream objects.

Without further ado, the use of the “separate construction and initialization” and “just-in-time

initialization” idioms applied to SomeClass shown in Listing 111 gives the new refactored class in

Listing 112.

Listing 112 : Example of the use of the “separate construction and initialization” and “just-in-time

initialization” idioms

class SomeClass : public SomeBaseClase {

17The new C++0x standard will address the problem of duplicate constructor initialization lists by allowing constructors to call

each other but we will not see such a feature in wide spread use until many years after the C++0x standard is finalized.

122

public:

SomeClass(): isIntialized_(false), member1_(1), member2_(5.0) {}

void set_A(const RCP<A> &a) { a_ = a; isIntialized_=false; }

void set_B(const RCP &b) { b_ = b; isIntialized_=false; }

RCP<A> get_A() { return a_; }

RCP get_B() { return b_; }

RCP<C> get_C() { justInTimeInitialize(); return c_; }

void uninitialize() { a_ = null, b_ = null; c_ = null; isIntialized_=false; }

void doSomeOperation(...)

{

justInTimeInitialize();

...

}

private:

bool isIntialized_;

int member1_;

double member2_;

RCP<A> a_;

RCP b_;

RCP<C> c_;

void justInTimeInitialize()

{

if (isIntialized_) return;

// Can now call virtual functions on SomeBaseClass (someBaseFunc())!

if (nonnull(a_) && nonnull(b_))

c_ = createC(rcp(this, false), a, b, this->getSomeValue());

...

isIntialized_ = true;

}

};

// Non-member constructors

RCP<SomeClass> someClass()

{ return rcp(new someClass()); }

RCP<SomeClass> someClass(const RCP<A> &a)

{ RCP<someClass> sc(new someClass()); sc->set_A(a); return sc; }

RCP<SomeClass> someClass(const RCP &b)

{ RCP<someClass> sc(new someClass()); sc->set_B(b); return sc; }

RCP<SomeClass> someClass(const RCP<A> &a, const RCP &b)

{ RCP<someClass> sc(new someClass()); sc->set_A(a); sc->set_B(b); return sc; }

SIDE NOTE: Before describing the specific advantages of the refactored class in Listing 112, first note that

the issue of the creation of the C object and dangling references of c returned from get C() have not been

addressed in this design. That issue will be addressed with the “object self-reference” idiom described in

Section 5.13.3.

Some of the specific advantages of the usage of the “separate construction and initialization” idiom as

applied to the design of SomeClass shown in Listing 112 are described below.

a) The default values for member1 and member2 are defined in only one constructor initialization list.

This massively simplifies the maintenance of large complex classes with lots of data members and more

than one constructor.

123

b) The private initialization function justInTimeInitialize() can now call a virtual function on the

base class SomeBaseClass::getSomeValue() to get the value of someValue instead of requiring the

client to pass it into the constructor.

c) The objects a and b can be constructed and injected into the SomeClass object in different parts of the

code by different clients. This breaks a fundamental dependency which couples these objects and the

clients together and can massively simplify the structure of complex programs.

d) The “separate construction and initialization” idiom naturally leads to the “just-in-time initialization”

idiom where the justInTimeInitialize() function is not called until the functions

doSomeOperation(...) or get C() are called by a client. This allows the objects a and/or b to be passed

into the functions set A(...) and set B(...) in a partially initialized state. These objects do not need to

be fully initialized until the doSomeOperation(...) or get C() functions are called. This can massively

simplify and robustify the design of complex programs by separating code that creates the links between

objects from the code that fully initializes the objects. This avoids the constraints of needing to use a

factory object to create fully initialized “aggregate” objects described in [14].

e) An object of type SomeClass is not any harder for a client to create because the non-member constructor

functions allow the object to be constructed in a single function call (see Section 5.8.1) for all the use cases

given in the original class constructor design.

The only real disadvantage of the “separate construction and initialization” idiom is some small decrease in

performance in using assignment instead of member initialization lists [26, Item 4]. However, this type of

low-level performance is almost never an issue in higher-level classes like SomeClass shown in

Listing 112. Most classes in a complex program are higher-level classes where low-level performance

considerations like this are not an issue so the the “separate construction and initialization” idiom is

applicable in more cases than not.

The main disadvantage of the “just-in-time initialization” idiom is the need to have a call the function

justInTimeInitialize() in every operation that requires the object to be fully initialized. This is minor

programming inconvenience and a minor performance overhead. The more significant disadvantage is that

more unit testing is needed to test the behavior of the user functions for when the object is not ready to be

fully initialized. However, good class design makes this fairly easy.

5.13.3 The object self-reference idiom

There are occasions where an object needs to provide an RCP to itself with the full protection of the

debug-mode checking with node-tracing enabled. However, for an object to hold a strong RCP to itself

would set up a circular reference and the object would never be deleted. The issue of self references was

mentioned in the previous section in the context of the “separate construction and initialization” idiom.

The most straightforward example of where the “object self-reference” idiom is needed is when a factory

object creates a product that must in turn store a strong owning RCP to the factory that created it. This is the

exact use case that exists in the Thyra package for VectorBase and VectorSpaceBase objects [3]. In this

case, VectorSpaceBase acts as the factory and VectorBase acts as the product. Also, every VectorBase

object has a function space() that returns an RCP to the VectorSpaceBase object that created it to be used

to create other VectorBase objects.

124

A simplified version of the implementation of the VectorSpaceBase standard subclass

DefaultSpmdVectorSpace using the “object self-reference” idiom is shown in Listing 113.

Listing 113 : Example of the “object self-reference” idiom where a factory must give a strong owning

RCP self reference to its products.

class DefaultSpmdVectorSpace : public VectorSpaceBase {

RCP<DefaultSpmdVectorSpace> weakSelfPtr_;

Ordinal localDim_;

DefaultSpmdVectorSpace() : localDim_(0) {}

public:

static RCP<DefaultSpmdVectorSpace> create()

{

RCP<DefaultSpmdVectorSpace> vs(new DefaultSpmdVectorSpace);

vs.weakSelfPtr_ = vs.create_weak();

return vs;

}

void initialize(const Ordinal localDim)

{ localDim_ = localDim; }

RCP<VectorBase> createMember()

{ return defaultSpmdVector(weakSelfPtr_.create_strong()); }

};

// Nonmeber constructor

RCP<DefaultSpmdVectorSpace> defaultSpmdVectorSpace(const Ordinal localDim)

{

RCP<DefaultSpmdVectorSpace> vs = DefaultSpmdVectorSpace::create();

vs->initialize(localDim);

return vs;

}

The way the “object self-reference” idiom works is that a static function create() allocates a

default-initialized DefaultSpmdVectorSpace object and stores it in a strong owning RCP object. It then

creates a weak RCP object that it sets as the self reference on the newly created DefaultSpmdVectorSpace

object. The default constructor is made private so the only way for a client to create an

DefaultSpmdVectorSpace object is to use use the static create() function (or call it indirectly through

the non-member constructor function defaultSpmdVectorSpace()). Because this self reference is a weak

tracing RCP, it can detect dangling references or can be used to create a strong RCP when needed while at

the same time not creating a circular reference that would result in a memory leak.

The member function createMember() shown in Listing 113 creates a strong owning RCP to itself which

is given to the newly created DefaultSpmdVector object in the statement

defaultSpmdVector(weakSelfPtr .create strong()). This allows the resulting product

DefaultSpmdVector object to outlive the client’s RCP references to the DefaultSpmdVectorSpace

factory object. A simple example of this is shown in Listing 114.

Listing 114 : Example of client code that creates a factory, uses it to create a product and lets the factory
go away where the factory is remembered in the product

RCP<VectorBase> createMyVector(const Ordinal localDim)

125

{

RCP<DefaultSpmdVectorSpace> vs = defaultSpmdVectorSpace(localDim);

return vs->createMember();

// NOTE: The DefaultSpmVectorSpace object is embedded in the returned

// DefaultSpmdVector object and will not be deleted

}

Code like shown in Listing 114 may seem contrived but there have been several use cases for Thyra over

the years that required code just like this to work or it would have resulted in a much more complex design

of the client’s code to work around this issue.

There are also other less obvious examples where the “object self-reference” idiom is useful. For one such

case, consider Listing 115 which shows a simplified version of the class shown in Listing 111 that has to

pass a self reference to an object it creates and holds internally.

Listing 115 : Example of an class with RCP-to-self problems (similar to the class in Section 5.13.2)

class SomeClass : public SomeBaseClass {

RCP<C> c_;

void finalInitialization() { ...}

public:

SomeClass() {}

{ c_ = createC(rcp(this, false)); finalInitialization(); }

RCP<C> get_C() { return c_; }

...

};

The problem with the code in Listing 115 is that it gives up an RCP<C> object to its internal C object that is

constructed internally but a proper node tracing relationship has not been established between the C object

and the SomeClass object. (Even if SomeClass does not intentionally give up its RCP<C> object, it is still

very easy to do it by accident so this scenario still applies.) To see the problem with this, consider the client

code in Listing 116.

Listing 116 : Client code that results in undefined behavior (e.g. segfault)

RCP<SomeClass> sc(new SomeClass);

RCP<C> c = sc->get_C();

sc = null; // The SomeClass object is destroyed which invalidates ’c’!

c->someFunc(); // Undefined behavior of call to deleted SomeClass!

The problem with the code in Listing 116 is that when the SomeClass object sc is destroyed, there is no

way for the reference-counting machinery in to catch the dangling reference. This code yields undefined

behavior and will segfault if one is lucky but like any memory usage error, if one is unlucky the code will

appear to work correctly but will be a ticking time-bomb that will go off eventually. The reason for this

behavior is that the statement c = createC(rcp(this, false)) in the constructor SomeClass()

creates a non-owing RCPNode object before the owning RCPNode object is created by the client code

RCP<SomeClass> sc(new SomeClass). This violates Commandment 5 in Appendix B. The node-tracing

126

reference-counting machinery would have to be more complex and much more expensive to catch dangling

reference errors where the strong owning RCPNode object was not the first RCPNode object created.

The solution to this problem is to use a variation of the “object self-reference” idiom. The updated design

that accomplishes this is shown in Listing 117.

Listing 117 : Example of the “object self-reference” idiom for detecting dangling references to internally

held objects

class SomeClass : public SomeBaseClass {

RCP<SomeClass> weakSelfPtr_;

RCP<C> c_;

SomeClass() {}

void justInTimeInitialize() { c_ = createC(weakSelfPtr_); }

public:

static RCP<SomeClass> create()

{

RCP<SomeClass> sc(new SomeClass);

sc.weakSelfPtr_ = sc.create_weak();

return sc;

}

RCP<C> get_C() { justInTimeInitialize(); return c_; }

...

};

// Nonmeber constructor

RCP<SomeClass> someClass() { return SomeClass::create(); }

The advantage of the design in Listing 117 is that now client code like shown in Listing 118 below will

result in a dangling reference exception in a node-tracing debug-mode build.

Listing 118 : Client code that results a clean dangling-reference exception

RCP<SomeClass> sc = someClass();

RCP<C> c = sc->get_C();

sc = null; // The SomeClass object is destroyed which invalidates ’c’!

c->someFunc(); // Now the dangling reference is detected and throws!

Note that the implementation of SomeClass in Listing 117 means that the nature of the relationship

between the C object returned from SomeClass::get C(), the parent SomeClass object, and the client

code represents a semi-persisting association as defined in Section 4.2. In this case, the usage of the C

object is only valid while the parent SomeClass object still exists. However, if the client mistakenly tries to

use a dangling C object after its parent SomeClass object is destroyed, then a clean runtime

dangling-reference exception is thrown as described in Section 5.11.3.

Alternatively, if one wants the SomeClass::get C() function to create a true persisting association where

the C object can outlive all of the client references to the parent SomeClass object, then the implementation

of SomeClass::get C() can be modified to what is shown in Listing 119.

Listing 119 : Implementation of the “object self-reference” idiom using a true persisting association

127

RCP<C> SomeClass::get_C()

{

justInTimeInitialize();

return rcpInvertedObjOwnership(c, weakSelfPtr_.create_strong());

}

Creating a strong RCP is required in this case as well as the inversion of the object ownership (which is an

instance of the “inverted object ownership” idiom which is described in Section 5.13.1).

Given the implementation in Listing 119, client code like shown in Listing 118 will allow the C object to be

used after the client’s RCP<SomeClass> object is made null without thrown a dangling reference

exception. Choosing between a semi-persisting or a persisting association is a design decision for the

creator of SomeClass.

5.13.4 The generalized view design pattern

One of the most useful and powerful idioms / design-patterns related to the use of the Teuchos memory

management classes is the “generalized view” design pattern18. In this context, a “view” is some object

that is created off of a parent object and provides some type of access to some part of the parent. Views can

be const or non-const and can be persisting or semi-persisting (see Section 4.2 for the definition of

persisting and semi-persisting associations). Views can also be direct views or “generalized views” (i.e.

potentially detached non-direct views).

A direct view is one which directly points into the the internal data structures of the parent so that a change

of the view instantaneously changes the parent and changes to the parent instantaneously changes the

view(s). An example of a direct view is an iterator into an container such as is returned from

std::vector::begin() or std::list::begin(). Other examples of direct views include ArrayView

views of Array and ArrayRCP objects. Direct views can be non-const or const as is demonstrated with

iterators and ArrayViews. Direct views are a pleasure to work with but they also fundamentally constrain

the implementation of the parent objects that they are providing the views into. In the case of contiguous

array containers like std::vector and ArrayRCP, constraining the implementation to store a pointer to a

contiguous array of data internally is not a problem, that is an important and proper design constraint for

these classes. However, for more general classes, the rigid constraints imposed by direct views are

unacceptable and break the abstraction in many cases. For example, if an abstract matrix object provides

direct views of the rows of a matrix then the matrix must necessarily be stored in a row-major

data-structure, precluding other possibilities. Once a direct row-based view is supported by such a matrix

class, it becomes impossible to change the internal representation of the matrix to anything other than a

row-oriented implementation and still maintain high performance and a reasonable implementation.

18Here the term ‘design pattern’ and not ‘idiom’ is used to describe the “generalized view” design pattern. The reason that the

more general term ‘design pattern’ is being used is that the majority of the pattern is really language independent and the behaviors

are more general then what one will find in a typical language-specific idiom. It is only the RCP details that would classify this as a

C++ idiom. However, this is an important example of the use of RCP so it is worthy to be discussed in this document.

128

Figure 15. Depiction of contiguous and non-contiguous multi-vector

column views.

Basic overview of the “generalized view” design pattern

Because direct views can overly constrain the implementation freedom of the parent, in order to allow for

the fullest freedom to pick the internal implementations of the parent and the view separately, we must

instead consider using potentially detached non-direct views defined here as “generalized views”. A

“generalized view” is a view of a parent object that is not guaranteed to be a direct view such that changes

to the view may not be instantaneously propagated to the parent and vice versa. One example of a case

where a “generalized view” is needed is when creating a view of non-contiguous columns of a dense

matrix where, for the sake of efficiency, one must create a temporary contiguous copy as a new dense

matrix. This type of generalized view is used in the implementation of Thyra MultiVector non-contiguous

column views [3] which is depicted in Figure 15. In the Thyra MultiVector implementation, when the

client requests a view of a set of non-contiguous columns, the implementation will create a temporary

contiguous copy which results in improved performance of many types of operations19 . The Thyra

example of non-contiguous column views is a good example because it is a simple case to describe yet has

all the features needed to demonstrate the workings of the generalized view design pattern.

Before describing the Thyra MultiVector example in more detail, first, a generic description of the

“generalized view” design pattern is presented. The most general description of the “generalized view”

design pattern is shown in Figure 16 (UML class diagram) and Figure 17 (UML state diagram). Figure 16

shows two generic classes; a Parent and a View. In this case, only one type of the view is shown but in

reality there can be several different types of views into a single parent object (as there are in the Thyra

MultiVector case). A view is created using either the createNonconstView(...) or the

createView(...) functions. In either case, the returned view is wrapped in an RCP object. There are two

purposes for wrapping the view in an RCP object. First, a new View object may need to be dynamically

allocated to satisfy the view request (and therefore needs RCP to take care to control the lifetime of the

dynamically allocated view object). Second, the action needed to re-sync the parent up with the view can

be set as an embedded object on the returned RCP (see Section 5.9.4). In fact, the Parent object is not

guaranteed to be updated after changes to a non-const view are made until the view is destroyed/released.

To demonstrate, consider the client code in Listing 120.

19Using contiguous columns of a Fortran-style column-major dense matrix is required in order to take advantage of high perfor-

mance Basic Linear Algebra Subroutines (BLAS) software [11].

129

Figure 16. Parent and child classes for “generalized view” design

pattern.

Figure 17. State behavior for parent object in “generalized view”

design pattern.

130

Listing 120 : Example use of a generalized view

void changeParent(const Ptr<Parent> &parent)

{

// Create a non-const view

const RCP<View> view = parent->createNonconstView(...);

// Change the parent through the view

view->makeChange(...);

view->makeChange(...);

...

// Destroy the view which resycs the view with the parent

view = null;

// Now the parent has been updated for changes through the view!

}

The code in Listing 120 demonstrates that the parent is only guaranteed to be updated after the non-const

generalized view has been destroyed. The state of the parent is undefined while a non-const view is active.

One of three possibilities exist for the state of the parent while a non-const view is active. First, if the view

just happens to be a direct view, then changes to the view are instantaneously reflected in the parent.

Second, if the view is a completely separate chunk of data, changes to the view do not affect the state of the

parent at all until the view is destroyed and the data in the view is copied into the parent’s internal data

structures in the appropriate way. The third option is somewhere in between the first two; part of the view’s

data may directly point back into the parent’s internal data structures and the rest of the view’s data may be

separate from the parent. In this case, the state of the parent object may actually violate its internal

invariants and the parent object would not even be usable while the non-const view is active.

In order to allow complete freedom in how a generalized view is implemented and to allow the

implementation to change at will, a relatively strict usage protocol must be defined as shown in the parent’s

state diagram in Figure 17. With respect to generalized views, the Parent has one of three states; ‘no

views’, ‘has const views(s)’, and ‘has non-const view’. The default state of the parent is ‘no views’. In this

state, either a const or a non-const view can be created and all types of query and modifying functioins can

then be called. When a const view is created, the parent enters the state ‘has const view(s)’. In this state, the

parent object is still allowed to be queried and other const-views can be created. However, while there are

active const views, a non-const view cannot be created. The reason that non-const views cannot be allowed

while const views are active is that creating a non-const view and then changing it while const views are

active would put the const views into an undefined state. If the const and non-const views happened to be

implemented as direct views, then changes to the non-const view would not only change the parent but it

would also change the direct const views. However, if the views are implemented as detached copies of

data, then changes to the non-const view would not be expected to be propagated to the existing const

views20. Since this type of ambiguity would destroy the abstraction, the generalized view design pattern

20Actually, one could implement an OBSERVER [23] type of implementation where changes to the views would automatically

be written back and forth to keep the parent and the views in sync but this would lead to complex and fragile implementations

and could significantly degrade performance if frequent small changes to data resulted in lots of syncs. Therefore, to allow for a

simple implementation and the highest performance, the generalized view design pattern discourages this type of more complex

less efficient OBSERVER-type of implementation.

131

simply states that creating non-const views on the parent while const views are active is just not allowed.

Likewise, any operations on the parent that might change the state in a way that would affect the views

must also be disallowed. In summary, when const views are active, the non-const interface of the parent

must be locked down. When the last const view is destroyed, the parent goes back to the ‘no views’ state.

When a non-const view is created the parent goes into the ‘has non-const view’ state. In this state, no other

non-const or const views can be created and the entire const and non-const interface of the parent must be

locked down. In essence, when a non-const view is active, the parent object has to be completely left along.

The reason for this should be obvious. When a non-const view is represented as a separate copy of data,

then the state of the parent is undefined until the non-const view is destroyed and the data is written back.

In this case, a query of the parent would not show the changes made in the active non-const view. Again,

this type of ambiguity would destroy the abstraction and therefore the parent object must be totally locked

down while a non-const view is active. Likewise, only one non-const view can be allowed at any one time

due to similar arguments. When the non-const view is destroyed, any changes in the data are written back

to the parent’s internal data structures and the parent goes back to the state ‘no views’.

In order to allow for the highest performance, the simplest implementations of the parent and the view

classes in all cases, and to help catch errors in client code, therefore by default the generalized view design

pattern states that views should be semi-persisting; that is, the views are only valid while the client’s RCP to

the parent is still active and the view is not expected to live on past the lifetime of the parent. Therefore,

any access to generalized views that remain after the last strong RCP<Parent> object is released should

result in dangling reference exceptions in a debug-mode build as shown in Listing 121.

Listing 121 : Example of a dangling reference generalized view

// Create and initialize parent

RCP<Parent> parent = createParent(...);

...

// Create a view

RCP<View> view = parent->createNonconstView(...);

// Destroy the parent (invalidating the existing view)

parent = null;

// Try to access the now dangling view

view->makeChange(...); // Throws dangling reference exception!

Even if a generalized view can be made persisting (which it is in the MultiVector example given later), the

implementation should still prefer to implement non-const views as semi-persisting views. The main

purpose of a non-const view is to change the parent object so if the parent is released before the non-const

view is written to and written back, then that is most likely a programming error in the client’s code. For

example, the code in Listing 121 is most likely an error in program logic because if the parent has been

deleted then there is no use in modifying the view. By implementing generalized views and semi-persisting

views the objects help to better catch these types of errors in client code.

However, if it makes sense in the particular setting, an implementation of the generalized view design

pattern can choose to implement the views as full persisting views that will persist even after all the

external parent references are removed (thereby avoiding dangling-reference exceptions). Note that if the

132

parent class implements the “object self-reference” idiom described in Section 5.13.3 then a strong RCP to

the parent object can always be attached to the RCP of the view, thereby providing for persisting generalized

views no mater what internal data structures are used.

Another aspect of the generalized view design pattern is that it is important to distinguish between

non-const views and const views. In the case of const views, if a separate copy of the data must be created

to support the const view, the data does not have to be written back to the parent when the const view is

destroyed. This makes const views fundamentally more efficient than non-const views (which must write

back their data when they are destroyed). Because const views are potentially more efficient, the unadorned

name createView(...) is given to create const views while the longer name

createNonconstView(...) is used to create non-const views. The idea is that a developer is more likely

to call the shorter createView(...) function creating a more efficient and safe const view. If a const view

is all the client code requires, then all is good. However, if the client code really needs to change the parent

object through the view, then the code will not compile and the developer will need to change the client

code to create a non-const view through createNonconstView(...).

Because the parent object gets locked down (or is in an undefined state when debug usage checking is not

enabled) when generalized views are active, it is important that client code only create views at the last

possible moment and then release them at the earliest possible moment. The best way to do this, when

possible, is to create and release the view in the same statement where the view will be used as

demonstrated in Listing 122.

Listing 122 : Example of minimizing the lifetime of a generalized view

void changeParentThroughView(const Ptr<Parent> &parent)

{

changeTheView(*parent-createNonconstView());

queryTheView(*parent->createView());

...

}

The client code in Listing 122 works just fine because the temporary RCP<[const] View> objects

managed by the compiler are guaranteed to exist until the full statement they are created in ends. This is

one case where using an RCP to manage the memory is very convenient.

The last issue to discuss related to the generalized view design pattern is that, depending on the nature of

the parent and the view classes, it may be reasonable to have the parent object partitioned into different

logical pieces and then apply the behaviors shown in Figure 17 to each of these logical pieces separately.

For example, one can treat each row or each column in a matrix object as a separate logical piece such that

one can allow separate views of each of the rows or columns independent of each other. This is the case

with the Thyra MultiVector example (mentioned earlier and to be described in more detail below).

However, any bulk query operations on the parent object (like taking an induced matrix norm) must be

locked out while non-const views are active. Likewise, any bulk modifying operation (like assigning all the

matrix entries to zero) must be locked out when any views are active.

133

Example implementation of generalized views for MultiVector non-contiguous column views

Now that a basic overview of the generalized view design pattern has been given, the Thyra MultiVector

non-contiguous column view example mentioned earlier and depicted in Figure 15 is described in more

detail. This is a good example to highlight the features of the generalized view design pattern and the usage

of the RCP class to manage detached view semantics. A simplified class declaration for the Thyra

MultiVector subclass showing the relevant class members is given in Listing 123.

Listing 123 : Class declaration for Thyra MultiVector implementation of multi-vector views as

“generalized views”

template<class Scalar>

class DefaultSpmdMultiVector : virtual public SpmdMultiVectorBase<Scalar> {

public:

...

DefaultSpmdMultiVector(

const RCP<const SpmdVectorSpaceBase<Scalar> > &spmdRangeSpace,

const RCP<const ScalarProdVectorSpaceBase<Scalar> > &domainSpace,

const ArrayRCP<Scalar> &localValues,

const Ordinal leadingDim = -1

);

...

protected:

...

RCP<const MultiVectorBase<Scalar> >

nonContigSubViewImpl(const ArrayView<const int> &cols) const;

RCP<MultiVectorBase<Scalar> >

nonconstNonContigSubViewImpl(const ArrayView<const int> &cols);

...

private:

RCP<const SpmdVectorSpaceBase<Scalar> > spmdRangeSpace_;

RCP<const ScalarProdVectorSpaceBase<Scalar> > domainSpace_;

ArrayRCP<Scalar> localValues_;

Ordinal leadingDim_;

ArrayRCP<Scalar> createContiguousCopy(const ArrayView<const int> &cols) const;

};

// Non-member constructor

template<class Scalar>

RCP<DefaultSpmdMultiVector<Scalar> >

134

defaultSpmdMultiVector(

const RCP<const SpmdVectorSpaceBase<Scalar> > &spmdRangeSpace,

const RCP<const ScalarProdVectorSpaceBase<Scalar> > &domainSpace,

const ArrayRCP<Scalar> &localValues,

const Ordinal leadingDim = -1

)

{

return Teuchos::rcp(

new DefaultSpmdMultiVector<Scalar>(

spmdRangeSpace, domainSpace, localValues, leadingDim));

}

The internal private data-structure for a multi-vector is very simple as shown in Listing 123. A standard

column-major Fortran-style dense matrix format is used where all of the data in the local processes is

stored in a single contiguous ArrayRCP<Scalar> object. The number of rows in the local process is given

by spmdRangeSpace ->localSubDim() and leadingDim is the stride between columns.

The generalized views returned by the functions nonContigSubViewImpl(...) and

nonconstNonContigSubViewImpl(...) are of the type MultiVectorBase which is the upper-most base

class for DefaultSpmdMultiVector. (The concrete types of the views are actually

DefaultSpmdMultiVector.) Therefore, this is an instance where the class types of the parent and view are

actually the same (an interesting example of CLOSURE OF OPERATIONS principle [14, Chapter 10])!

The implementations of the functions nonContigSubViewImpl(...) and

nonconstNonContigSubViewImpl(...) are given in Listing 124.

Listing 124 : Implementation of DefaultSpmdMultiVector functions

nonContigSubViewImpl(...) and nonconstNonContigSubViewImpl(...)

template<class Scalar>

RCP<const MultiVectorBase<Scalar> >

DefaultSpmdMultiVector<Scalar>::nonContigSubViewImpl(

const ArrayView<const int> &cols) const

{

THYRA_DEBUG_ASSERT_MV_COLS("nonContigSubViewImpl(cols)", cols);

const int numCols = cols.size();

const ArrayRCP<Scalar> localValuesView = createContiguousCopy(cols);

return defaultSpmdMultiVector<Scalar>(

spmdRangeSpace_,

createSmallScalarProdVectorSpaceBase<Scalar>(*spmdRangeSpace_, numCols),

localValuesView);

}

template<class Scalar>

RCP<MultiVectorBase<Scalar> >

DefaultSpmdMultiVector<Scalar>::nonconstNonContigSubViewImpl(

const ArrayView<const int> &cols)

{

THYRA_DEBUG_ASSERT_MV_COLS("nonContigSubViewImpl(cols)", cols);

const int numCols = cols.size();

135

const ArrayRCP<Scalar> localValuesView = createContiguousCopy(cols);

const Ordinal localSubDim = spmdRangeSpace_->localSubDim();

RCP<CopyBackSpmdMultiVectorEntries<Scalar> > copyBackView =

copyBackSpmdMultiVectorEntries<Scalar>(cols, localValuesView.getConst(),

localSubDim, localValues_.create_weak(), leadingDim_);

return Teuchos::rcpWithEmbeddedObjPreDestroy(

new DefaultSpmdMultiVector<Scalar>(

spmdRangeSpace_,

createSmallScalarProdVectorSpaceBase<Scalar>(*spmdRangeSpace_, numCols),

localValuesView),

copyBackView);

}

The implementation of the sub-view functions in Listing 124 is fairly simple. First, the private helper

function createContiguousCopy(...) creates an ArrayRCP<Scalar> object for a contiguous copy of

the non-contiguous columns being requested. This contiguous copy of data is then given over to create a

new DefaultSpmdMultiVector object which represents the view. The implementation of the function

createContiguousCopy(...) is simple enough and is given in Listing 125.

Listing 125 : Implementation of DefaultSpmdMultiVector function
createContiguousCopy(...)

template<class Scalar>

ArrayRCP<Scalar>

DefaultSpmdMultiVector<Scalar>::createContiguousCopy(

const ArrayView<const int> &cols) const

{

typedef typename ArrayRCP<Scalar>::const_iterator const_itr_t;

typedef typename ArrayRCP<Scalar>::iterator itr_t;

const int numCols = cols.size();

const Ordinal localSubDim = spmdRangeSpace_->localSubDim();

ArrayRCP<Scalar> localValuesView = Teuchos::arcp<Scalar>(numCols*localSubDim);

// Copy to contiguous storage column by column

const const_itr_t lv = localValues_.begin();

const itr_t lvv = localValuesView.begin();

for (int k = 0; k < numCols; ++k) {

const int col_k = cols[k];

const const_itr_t lv_k = lv + leadingDim_*col_k;

const itr_t lvv_k = lvv + localSubDim*k;

std::copy(lv_k, lv_k+localSubDim, lvv_k);

}

return localValuesView;

}

Note how iterators are used to perform the raw data copy in Listing 125. This results in very well checked

code in a debug-mode build (see Section 5.11) but very high performance code in a non-debug optimized

build (see Section 5.12).

Note that the key difference between the implementation of the functions nonContigSubViewImpl(...)

and nonconstNonContigSubViewImpl(...) in Listing 124 is that

136

nonconstNonContigSubViewImpl(...) creates an RCP to an object of type

CopyBackSpmdMultiVectorEntries and attaches it to the created

RCP<DefaultSpmdMultiVector<Scalar> > object as an embedded object (see Section 5.9.4). The

destructor for CopyBackSpmdMultiVectorEntries performs the copy-back of the non-const view after

the last RCP to the view is destroyed. The implementation of the class

CopyBackSpmdMultiVectorEntries is given in Listing 126.

Listing 126 : Implementation of the class CopyBackSpmdMultiVectorEntries

template<class Scalar>

class CopyBackSpmdMultiVectorEntries {

public:

CopyBackSpmdMultiVectorEntries(

const ArrayView<const int> &cols,

const ArrayRCP<const Scalar> &localValuesView, const Ordinal localSubDim,

const ArrayRCP<Scalar> &localValues, const Ordinal leadingDim

)

: cols_(cols), localValuesView_(localValuesView), localSubDim_(localSubDim),

localValues_(localValues), leadingDim_(leadingDim)

{}

˜CopyBackSpmdMultiVectorEntries()

{

typedef typename ArrayRCP<const Scalar>::const_iterator const_itr_t;

typedef typename ArrayRCP<Scalar>::iterator itr_t;

// Copy from contiguous storage column by column

if (localValues_.strong_count()) {

const int numCols = cols_.size();

const const_itr_t lvv = localValuesView_.begin();

const itr_t lv = localValues_.begin();

for (int k = 0; k < numCols; ++k) {

const int col_k = cols_[k];

const const_itr_t lvv_k = lvv + localSubDim_*k;

const itr_t lv_k = lv + leadingDim_*col_k;

std::copy(lvv_k, lvv_k + localSubDim_, lv_k);

}

}

}

private:

Array<int> cols_;

ArrayRCP<const Scalar> localValuesView_;

Ordinal localSubDim_;

ArrayRCP<Scalar> localValues_;

Ordinal leadingDim_;

};

// Non-member constructor

template<class Scalar>

RCP<CopyBackSpmdMultiVectorEntries<Scalar> >

copyBackSpmdMultiVectorEntries(

const ArrayView<const int> &cols,

const ArrayRCP<const Scalar> &localValuesView, const Ordinal localSubDim,

137

const ArrayRCP<Scalar> &localValues, const Ordinal leadingDim

)

{

return Teuchos::rcp(

new CopyBackSpmdMultiVectorEntries<Scalar>(

cols, localValuesView, localSubDim, localValues, leadingDim));

}

The implementation of CopyBackSpmdMultiVectorEntries in Listing 126 is straightforward. When the

destructor is called, it copies the data in the non-const view back to the native storage of the parent

DefaultSpmdMultiVector object.

The only twist in the implementation of nonconstNonContigSubViewImpl(...) and

CopyBackSpmdMultiVectorEntries is that a weak ArrayRCP is used for the parent’s localValues data

in the CopyBackSpmdMultiVectorEntries object. It is created in the function

nonconstNonContigSubViewImpl(...) with localValues .create weak(). If the parent goes away

before the view, then the weak pointer localValues in the destructor for

CopyBackSpmdMultiVectorEntries will have a strong count of 0, thereby resulting in the skipping of the

copy-back of data. This this a performance optimization since there is no point in copying back the data if

the parent object is gone. This design allows both const and non-const multi-vector views to be persisting

(past the lifetime of the parent) and still have the highest performance.

There are several things that are interesting about this example. First, by using the embedded object feature

of RCP, the code is able to implement the copy-back-to-parent functionality without having to write a new

MultiVector subclass just for the view. The DefaultSpmdMultiVector objects that are returned as views

have no idea they are being used as views into other DefaultSpmdMultiVector objects. Without the

embedded object feature described in Section 5.9.4, a different MultiVector subclass would have to be

created with a destructor that would copy back the data. Second, the constraints imposed by the generalized

view design pattern shown in Figure 17 ensure that no problems will arise due to the fact that the views are

stored in detached copies of the data. If changes to the parent DefaultSpmdMultiVector were allowed

while a non-const DefaultSpmdMultiVector view was active, then all of the changes in the parent would

be overwritten when the DefaultSpmdMultiVector view was destroyed. Third, this example

demonstrates why const views are fundamentally more efficient than non-const views. In the case of a const

view, the temporary contiguous copy of data is just released and does not need to be copied back to the

parent. This saves the work imposed by the destructor on the CopyBackSpmdMultiVectorEntries object.

Summary of the generalized view design pattern

In summary, the main properties and features of the generalized view design pattern are:

• Generalized views allow for complete abstraction, encapsulation, and the highest performance in all

cases. This is simply not possible to achieve with direct views.

• Non-const generalized views are only guaranteed to update the state of the parent after the view

object has been released.

• A single parent object can provide more than one type of generalized view and views can be applied

separately to different logically distinct parts of the parent object (e.g. views to the rows or columns

138

of an abstract matrix object can be created and handled separately).

• It is important to differentiate between non-const views and const views. While detached non-const

views must be copied back to parent when the view is released, const views do not (therefore

improving the performance of const views).

• It is critical that RCP objects be used to wrap the created view objects in order to allow the views to

be dynamically allocated and to allow for specialized copy-back behavior when non-const views are

destroyed.

• The flexibility and performance gains allowed by the generalized view design pattern come at the

expense of more restricted usage patterns of the parent and view objects.

– Only one non-const view can be active for any logically district part of the parent object at any

one time and the parent object (or at least any functionality that relates to the viewed part) must

be locked down while a non-const view is active.

– Multiple const views can be active for any logically district part of the parent object at any one

time but the non-const interface of the parent object (at least any non-const functionality that

relates to that viewed part) must be locked down while any const views are active.

5.14 Comparison with other class libraries and the standard C++ library

Comparisons between the Teuchos memory management classes and other classes in Boost and the

standard C++ library have been made throughout this document. Here, these comparisons are summarized

and extended. Comparisons with Boost classes are for version 1.40.

The Teuchos class RCP is almost identical in most respects to the boost::shared ptr class and therefore

also the std::tr1::shared ptr in C++03 and std::shared ptr class in C++0x. The first version of the

class RCP was developed back in 1998 under the name MemMngPack::ref count ptr as part of the

development of the rSQP++ package [32] (now called MOOCHO [4]). At that time, there was no general

purpose high-quality reference-counted smart pointer class available and many compilers at the time (e.g.

MSVC++ 6.0) could not even support template member functions needed for implicit smart-pointer

conversions. After 1998, the first boost::shared ptr class appeared (which did not allow a customized

deallocation policy and was therefore not very flexible). Over the years, the two classes independently

evolved in very similar ways. The current version of boost::shared ptr is a high-quality flexible

reference-counted smart pointer class. Because it now supports custom template deallocator policy objects

(which are called “deleters” in boost::shared ptr) it allows for great flexibility in how it is used.

The key advantages of the RCP class over the current boost::shared ptr class are greater functionality,

greater flexibility, and better debug-mode runtime checking. The few of the specific key advantages of the

RCP class that cannot be replicated with the boost::shared ptr class without changing its design include:

• The RCP class has built-in support for debug-mode runtime tracing of reference-counting nodes

(Section 5.9.1) which is used to implement a whole host runtime checking including the detection

and reporting of a) circular references (Section 5.11.2) and b) multiple owning reference-counted

objects (Section 5.11.4).

• The RCP class allows the association and retrieval of extra data attached to an already-created

reference-counting node object (Section 5.9.5).

139

• The RCP class allows a client to call release() to remove deletion ownership from an

already-created RCP object (the rare need for this is described in Section 5.9.5).

• The RCP class has built-in support for both strong and weak reference-counted pointer handles right

in the same class (see Section 5.9.2). The boost::shared ptr class uses a separate

boost::weak ptr class to represent weak references which is less flexible. The RCP approach

allows the debug-mode runtime detection and reporting of dangling non-owning references while

boost::shared ptr class cannot when using a null deleter (Section 5.11.3).

The key advantages of the current boost::shared ptr class over the current RCP class are that it has

lower storage and runtime overhead (Section 5.12.1).

Because both the Teuchos RCP and boost::shared ptr classes support customized deallocation policy

objects, one can embed an RCP object in a boost::shared ptr object and vice versa. This is already

supported in Teuchos using the overloaded non-member template helper functions Teuchos::rcp(const

boost::shared ptr<T> &p) and Teuchos::shared pointer(const RCP<T> &rcp) (see Table 8).

This allows the developer to mix and match RCP and boost::shared ptr objects in the same code and

still have correct memory management. However, since RCP has better debug-mode runtime checking and

is more flexible it should be preferred to boost::shared ptr in most high-level code. Alternatively,

because boost::shared ptr has slightly lower overhead and is present std::tr1 it also has valid uses.

Additionally, of course, one may need to convert back and forth between RCP and boost::shared ptr

objects to glue together different pieces of separately developed code that use different smart pointer

classes. The class boost::scoped ptr is identical to std::auto ptr but does not allow copying or

assignment and is therefore safer to use in more limited scopes.

Another smart pointer class for single objects is std::auto ptr. This class does not support sharing and

has only the minimal functionality needed to support the Resource Allocation Is Initialization (RAII) idiom

[31, Item 13]. Given that reference-counting overhead is low compared to raw allocations and

deallocations (see Section 5.12.1) there is little reason to ever use std::auto ptr instead of RCP (or

boost::shared ptr for that matter) except for perhaps the handling of RAII for small objects.

The Teuchos class Array is of course equivalent to std::vector by design and uses an std::vector

internally. The main advantages of using Array instead of directly using std::vector are a) Array has

better debug-mode runtime checking and produces better error messages, b) conversion to the other

Teuchos array types ArrayView and ArrayRCP includes full runtime debug-mode detection and reporting

of dangling references (which is not possible with with std::vector), and c) is more consistent with the

usage of the other Teuchos array types. A major difference between Array and std::vector is that Array

uses an unsigned integer for its size type (see Appendix C for the justification).

The Teuchos class ArrayRCP really has no equivalent class in Boost or the C++0x standard libraries. There

is a Boost class called boost::shared array which uses the boost::shared ptr reference-counting

machinery and has an overloaded operator[](size type) function but his class does not support

iterators (which are critical for safety and performance) and does not support persisting sub-views (see

Section 5.5.5).

The Teuchos compile-time sized array class Tuple is more or less equivalent to the class boost::array.

Both contain an iterator interface and other STL compliant functions. The key advantage of Tuple is that

conversions to the other Teuchos array types ArrayView and ArrayRCP support full runtime debug-mode

detection and reporting of dangling references.

140

Finally, the Teuchos classes Ptr and ArrayView have no equivalent in Boost or C++0x. As described

throughout this paper, these classes are key to creating C++ code that is maximally self documenting (by

distinguishing between persisting and non-persisting associations), maximally safe in terms of debug-mode

runtime checking, and while at the same time allowing for the highest performance in non-debug optimized

builds. One cannot plug the remaining holes in safety and performance without the Ptr and ArrayView

classes.

What makes the Teuchos memory management classes unique across all other class libraries is that they

form a complete coordinated system of types to encapsulate all raw C++ pointers in high-level code while

at the same time providing 100% secure debug-mode checking. This is only possible because these classes

are developed as a system of types and the level of debug-mode runtime checking that exists is only

possible because these types have access to each others private implementation (in some appropriate way).

In general, one cannot mix and match Boost, standard C++, and Teuchos classes together at the top level

and get safe C++ programs with the full extent of debug-mode runtime checking that the integrated set of

Teuchos classes provide. Many examples of this have been given through this document. One example is

that if one creates an ArrayView object from a std::vector object it cannot detect a dangling reference

(see Section 5.11.3). However, there are some specialized cases where Boost and standard C++ types can

be used safely with the Teuchos memory management classes and some of these cases have already been

discussed above (e.g. RCP and boost::shared ptr objects can be embedded in each other and deep copies

of array objects are always safe).

5.15 Advice on refactoring existing software

The easiest way to incorporate the full use of the Teuchos memory management classes is to develop new

code and use them from the very beginning. In this mode of development, the debug-mode runtime

checking makes development fast and productive with one never seeing a segfault or other memory usage

error that comes from undefined behavior. However, the more typical situation is that a large existing

code-base must continue to be developed, current code must be modified, and new code must integrated

with existing code. For existing code bases, the code will need to be refactored to use the Teuchos memory

management classes, replacing the use of raw pointers and raw calls to new and delete along the way.

While code refactored to use the Teuchos memory management classes will be of higher quality and more

productive to work with during further development, there will necessarily be a transition period where the

code will be refactored to replace current uses of raw C++ pointers and less-than-safe (or inflexible)

memory management approaches. It is not recommended that all work on new capabilities stop and the

existing code base be refactored all at once to switch over to the complete use of the Teuchos memory

management classes. Instead, the code should be refactored to use the Teuchos memory management

classes in small iterative cycles as needed. The highest priority code to refactor are the heavily used major

module and class interfaces. It is these major interfaces where mistakes and memory usage problems are

most likely to be made. However, rather than break backward compatibility it is wise to provide the safe

versions of the interface functions but leave the existing unsafe raw-pointer versions when possible and

have them call the new safe versions (by converting between raw pointers to the memory management

types as needed). This avoids duplication which simplifies further maintenance and also provides for

smooth upgrades of client code to incrementally switch over from raw pointers to the Teuchos memory

management classes. The help facilitate the transition of client code, the deprecated raw pointer interface

functions and other code can be marked as deprecated on some compilers which generates warning

messages while compiling (e.g. GCC’s attribute ((deprecated))).

141

While the most critical code to refactor to use the Teuchos memory management types are major module

and class interfaces, the next most important software to refactor is any software that needs to be changed

or extended. Other code is lower priority to refactor, especially existing well-encapsulated code that uses

raw C++ pointers internally that does not need to be changed to add new features any time soon. It is not

until such code needs to be changed that it should be refactored to use the safer memory management types

(which will make adding new features much easier and safer).

While the final state of code refactored to use the Teuchos memory management types is excellent (as

described throughout this document), great care must be exercised in refactoring the software. In general,

before any piece of software is refactored to use the Teuchos memory management types, it should first be

covered with high-quality unit tests (see [15] for a great treatment on how to add unit tests to existing code

bases to facilitate adding new features). The general process that should be followed to refactor existing

software to use the Teuchos memory management types includes the following major steps (consistent with

the advice in [15]):

1. Break dependencies to allow unit tests to be written

2. Add unit tests to cover behavior of the code to be refactored

3. Refactor the targeted code incrementally to use the Teuchos memory management classes (all the

while running the unit tests constantly including using Valgrind and/or Purify to ensure defects are

not being created) by:

(a) Replacing raw pointers internally with Teuchos memory management types until all raw

pointers are gone

(b) Writing new versions of the interface functions in terms of the safer Teuchos memory

management types

(c) Keeping the existing raw-pointer interface functions which are called by the unit tests but have

them call the new functions that take the safer memory management types

(d) Marking the raw-pointer versions of the functions as deprecated as so to facilitate refactoring of

client code (e.g. using GCC’s attribute ((deprecated)))

4. After a unit of code is totally refactored to use the new Teuchos memory management types, the unit

test code should be refactored to call the safe interface functions that don’t pass raw pointers, thereby

removing all raw C++ pointers from the unit test code itself.

5. Selectively refactor client code that can conveniently call the new safe interface functions of the

refactored code. (Caution, only do this if there are at least some decent system-level regression tests

in place.) As more and more code is refactored to use the safe Teuchos memory management types,

the easier and safer this type of refactoring will become.

6. Write new unit tests (using test-driven development) and add the desired new features in the selected

code safely and easily

While the incremental refactoring process described above may be slow and may only refactor small parts

of the code in each batch, over time, more and more of the code base will be refactored to remove raw C++

pointers and the code will become more and more safe, easier to work with, and be better self

documenting. Whatever happens, one should never attempt to refactor a large volume of code in one batch

142

to use the Teuchos memory management types, even if there are good unit tests in place. Refactorings

should never be attempted in large batches, no matter what [15].

The above process was followed with great success to refactor the Trilinos package Thyra [3] over a period

of more than a year. This process can be followed for a code base very safely and productively if the above

incremental unit-testing refactoring process is followed.

143

6 Miscellaneous topics

When thinking about memory management in C++ it is helpful to take a step back and consider a few

different higher-level issues. In the following section, the issue of essential and accidental complexity is

discussed and what role the Teuchos memory management classes play in addressing accidental

complexity and helping to make implicit concepts explicit. Then, the philosophy of memory management

is discussed and some analogies are used to help put things in perspective and provide a solid foundation

for the approach used in the Teuchos memory management classes as compared to approaches that start

with safer language but arrive at a similar balance between safety, speed, and flexibility.

6.1 Essential and accidental complexity, making implicit concepts explicit

While the idioms described in this document (largely outlined in Section 5.8) may appear complex at first

sight, one has to consider that it is not really the idioms that are complex but the essential attributes of

object relationships that are complex. Frederick Brooks refers to this as essential complexity as opposed to

accidental complexity [8]. Accidental complexity in programming refers to complexity resulting from

complicating details of the programming language or environment which are not directly related to solving

the problem at hand. Accidental complexity has largely been removed as higher level languages have been

developed [8, Chapter 16]. However, raw pointers in C and C++ and manual resource management (when

that is not the main focus of the program) are definitely a lingering category of accidental complexity21.

Alternatively, essential complexity exists because of the nature of the problem at hand that no programming

language will ever be able to fully remove. (However, one can use object-oriented and other design

approaches to abstract and partition the essential complexity such that we can write and maintain complex

large-scale programs.)

What the Teuchos Memory Management classes do is that they remove much of the accidental complexity

of using raw pointers and manual resource management and instead they more directly address the

essential complexity of writing programs in making important concepts of object relationships explicit that

are instead implicit in most languages (including raw C++). Dealing with the nature of relationships

between objects is essential complexity and for every relationship between two classes (for example in a

UML class diagram [16]) one must answer the essential questions:

• What is the multiplicity of the relationship? (i.e. is there just one object or is there more than one

object at the other end of the association?). In UML class diagrams, a singular multiplicity

relationship is represented using a 1 and multiplicity greater than one is represented using 1..* (see

Figure 4 for examples).

• Is the object optional or required? In a UML class diagram, an optional object is represented using

0..1 while a required object is represented as 1 (see Figure 4 for examples).

• Is the object changeable or non-changeable? In UML class diagrams, a non-changeable object is

given the attribute {readOnly}. In UML, by default, all objects at the end of an association are

assumed changeable.

• Is the association persisting or non-persisting? In a UML class diagram, non-persisting associations

are referred to as “dependency associations” and are represented with a dotted line (and can also be

21 http://discuss.joelonsoftware.com/default.asp?joel.3.278613.51

144

given the keyword ≪parameter≫). Persisting associations are referred to as “relationships” and

are represented as solid lines (see Figure 4 for examples).

Note that while UML is an expressive language that allows one to explicitly represent the above essential

information, most programming languages cannot (at least not the raw language). Consider that in Java and

Python that it is impossible to distinguish between persisting and non-persisting associations because every

user-defined object is always managed through an indirect reference handed by the garbage-collected

language. This causes big problems when it comes time to try to understand a complex program written in

these languages. For example, consider the agony that Micheal Feathers goes through in many refactorings

described in [15] in trying to determine the nature of objects as to whether they are actually embedded in

each other (i.e. persisting) or are just passed to each other (i.e. non-persisting). Python has no

user-definable concept of const but the Python language itself understands the need for const by having

built-in immutable data-types like strings and tuples.

One of the goals of the idioms defined in this paper is to change the above essential complexities from

implicit concepts to explicit concepts directly stated in code (see “Making Implicit Concepts Explicit” in

[14, Chapter 9]). The essential attributes of object relationships (i.e. multiplicity, persistent vs.

non-persistent, changeable vs. non-changeable) are present in every program no mater what high-level

programming language is used [8, 24, 15]. The issue is that most executable languages (not withstanding

executable XML [16, Chapter 1]) lack the expressiveness to make these concepts explicit. The Teuchos

memory management classes and the associated idioms described in this paper provide a means to make

many of these essential concepts explicit in C++ in a way that is not possible in any other widely used

programming language.

While the Teuchos memory management classes go a long way in removing some of the accidental

complexity of programing in C++ due to manual memory management, some of the types of remaining

accidental complexity (among many others not mentioned) include:

• Value semantics versus reference semantics: The distinction between value semantics versus

reference semantics is a C++ concept that does not directly relate to solving a problem or

representing a model in code and is therefore accidental complexity. In Java and Python, all

user-defined types use reference semantics but in C++ programmers can take advantage of

value-types which gives more efficient code and more control in C++ than what is possible in these

other languages. However, this extra control could be classified as accidental complexity (which we

tolerate for the sake of added control and improved performance).

• Pointer syntax for memory management types Ptr, and RCP: In order to access the underlying

object through the smart pointer types Ptr and RCP, one has to use pointer syntax using func(*a)

and a->someMember(). The C++ language makes it impossible to define abstract data types that

allow direct access to the underlying object (i.e. using func(a) and a.someMember()) like raw C++

references allow. Pointer syntax is not essential to the nature of problem solving (as proven by all the

languages that don’t have pointers including Java and Python) and therefore pointer syntax must be

categorized as accidental complexity. Note, however, that the types ArrayView and ArrayRCP were

not listed in this category because one can use these array classes using just the

operator[](size type) function and one does not need to use pointer syntax. In fact, ArrayView

does not even support any pointer-like functions and the pointer-like functions on ArrayRCP are only

really there to allow it to be used as a general-purpose checked iterator in a debug-mode build. While

pointer syntax is not an essential concept they do actually come in handy to define iterators into

145

containers and present a much more compact iterator interface that what one will find in other

languages. In other words, pointers syntax can be considered to be a nice enhancement when

considering iterators. In most other contexts, however, we must consider pointer syntax to contribute

to accidental complexity.

6.2 Philosophy of memory management: Safety, speed, flexibility and 100% guarantees

When looking at different strategies for memory management in C++ and in other languages, it helps to

think a little on the philosophical level which can actually help put the issues involved in perspective.

When looking at the different memory management approaches implemented in various programming

languages, the core issues come down to trade-offs in safety and correctness versus speed and flexibility.

For example, a language like C sacrifices safety and correctness for speed and flexibility. Because C is so

“close” to the hardware, one can implement very specialized memory management approaches tailored to

very specific types of domains. However, the price one pays for this raw speed and flexibility in C is the

fact that there is very little compiler-supported checking that would otherwise be needed to assert correct

memory usage.

Now take Python on the other extreme. If one writes code only in Python, one will almost never experience

and memory leak or segfault of any kind due to code that one directly writes. Here is a language which is

nearly 100% safe (assuming the language implementation is 100% correct) but offers less flexibility in how

memory is managed and results in very slow native code as compared to C in many cases (e.g. for

computationally intensive loops).

So how important is a 100% guarantee that memory will always be used correctly like is provided in a

language like Python? How important is a 100% guarantee in any area? Well, if one can get a 100%

guarantee without having to pay a significant price for it then one would be a fool not to accept it. For

example, if one has a choice between two vendors selling the same product for the same price but one

vendor will give a 100% money-back guarantee, with all things being equal, it would probably be foolish

not to go with the vendor with the 100% guarantee.

However, in most areas, greater safety (not to mention a 100% guarantee) comes with greater costs. Instead

of demanding a 100% guarantee, we typically accept some level of extra risk as long as we have taken

basic precautions to protect ourselves. To demonstrate this, let’s consider another analogy which I like to

refer to as the Transportation Analogy. When considering modes of transportation, we accept that we are

not 100% safe when driving our cars on the road but we do it anyway. The reason that we get into our cars

every day is that we take reasonable precautions like purchasing a car with a good safely design, wearing

seat-belts, obeying the traffic laws, driving a reasonable speed, and practicing defensive driving. What is

going to be argued here is that the approach to memory management that is being advocated in this paper is

the equivalent of driving a car, wearing one’s seat belt, and taking other reasonable safety precautions but

does not provide a 100% guarantee.

Now let’s talk about the safety versus speed/efficiently extremes in the Transportation Analogy and in the

area of memory management. At one extreme, writing all high-level code in C++ (or C) using raw pointers

for everything is like riding a high-performance motorcycle on a crowded interstate going 150 mph,

without wearing a helmet or any other safety gear, while doing a wheelie. At this extreme, one wrong move

means certain death.

146

At the other extreme, writing all code in a language like Python is like driving around in a reinforced tank

that does a maximum of 10 mph where one sits inside wearing a car racing helmet with the Hans device,

full racing safety gear, and having a massive air bag system to encase one’s entire body in foam three feet

thick in case of a collision. On this side of extreme safely, we could hit a Mac truck head on and be just

fine. The only way to really kill one’s self would be to drive off a shear cliff.

If we all required a near 100% safely guarantee, we would all be driving around in reinforced tanks like the

one described above but we don’t. We don’t because we are not willing to pay the price of the near 100%

guarantee provided by the tank. We can’t afford it financially and it would take forever to get back and

forth to work. Instead, we are content with our less than 100% safe cars because they are affordable and

fast and yet do not pose unreasonable risks.

Now, we can incrementally go from either extreme to a more balanced state in both the Transportation

Analogy and with memory management in C++ and Python.

From the extreme of safety with less speed and flexibility represented by the reinforced tank (and Python)

one can incrementally move toward the middle ground of the car. One can start by removing the racing

helmet and Hans device, followed by decreasing the weight and increasing the speed of the tank, and so on.

Continuing on this trend of sacrificing safety in favor of greater speed and agility leads us to our typical car.

Likewise, moving from an extreme of safety to a more reasonable balance between safety and

speed/flexibility in Python involves taking pieces of computationally intensive Python code, rewriting them

in C/C++, and then calling them from Python. This is an approach that many Python enthusiasts are

advocating [22] but make no mistake that in going down this road that one is sacrificing safety in Python in

the name of speed and flexibility. One is giving up Python’s near 100% guarantee when one does this and

will therefore have to deal with difficult and dangerous memory errors cropping up in the code.

From the extreme of speed and flexibility with little regard for safety represented by the motorcycle (and

C/C++ raw pointers) one can also incrementally move toward the car. One can start by putting on a helmet,

followed by slowing down some, and so on. Continuing on this trend of adding safety will eventually see

one morphing the motorcycle into the typical car. Likewise, moving from an extreme of less safety toward

a more reasonable balance between speed/flexibility and safety in C++ involves adding more and more

utility classes to hide more and more uses of raw C++ pointers in high-level C++ code. This is the trend

that the C++ community has been following for more than the last decade. We see it first in the

introduction of std::auto ptr and std::vector. This was then followed by the development of

boost::shared ptr (and therefore std::shared ptr in C++0x). What is being suggested in this paper is

the logical conclusion of this journey which is the development of a complete set of utility classes in order

to remove all raw C++ pointers from high-level C++ code; i.e. complete the transition from the motorcycle

(C/C++ raw pointers) to the car (Teuchos C++ memory management classes).

With the approach being advocated in this paper, using the Teuchos memory management classes in

debug-mode is like driving around in the tank where one is protected from almost any danger. However,

using the Teuchos memory management classes in non-debug optimized builds is like driving around with

the fast high-performance motorcycle. Try turning a tank into a motorcycle and then back again that easily!

147

7 Conclusions

Using the Teuchos reference-counted memory management classes allows one to remove unnecessary

constraints in the use of objects by removing arbitrary lifetime ordering constraints which are a type of

unnecessary coupling [24]. The code one writes with these classes will be more likely to be correct on first

writing, will be less likely to contain silent (but deadly) memory usage errors, and will be much more

robust to later refactoring and maintenance.

The level of debug-mode runtime checking provided by the Teuchos memory management classes is

stronger in many respects than what is provided by memory checking tools like Valgrind and Purify while

being much less expensive. However, tools like Valgrind and Purify perform a number of types of checks

(like usage of uninitialized memory) that makes these tools very valuable and therefore complement the

Teuchos memory management debug-mode runtime checking.

The Teuchos memory management classes and idioms largely address the technical issues in resolving the

fragile built-in C++ memory management model (with the exception of circular references which has no

easy solution but can be managed as discussed). All that remains is to teach these classes and idioms and

expand their usage in C++ codes. The long-term viability of C++ as a usable and productive language

depends on it. Otherwise, if C++ is no safer than C, then is the greater complexity of C++ worth what one

gets as extra features? Given that C is smaller and easier to learn than C++ and since most programmers

don’t know object-orientation (or templates or X, Y, and Z features of C++) all that well anyway, then what

really are most programmers getting extra out of C++ that would outweigh the extra complexity of C++

over C? C++ zealots will argue this point but the reality is that C++ popularity has peaked and is becoming

less popular while the popularity of C has remained fairly stable over the last decade22. Idioms like are

advocated in this paper can help to avert this trend but it will require wide community buy-in and a change

in the way C++ is taught in order to have the greatest impact.

To make these programs more secure, compiler vendors or static analysis tools (e.g. klocwork23) could

implement a preprocessor-like language similar to OpenMP24 that would allow the programmer to declare

(in comments) that certain blocks of code should be “pointer-free” or allow smaller blocks to be “pointers

allowed”. This would significantly improve the robustness of code that uses the memory management

classes described here.

22See the Tiobe index of programming language popularity at http://www.tiobe.com.
23http://www.klocwork.com
24http://openmp.org

148

References

[1] A. Avram and F. Marinescu. Domain-Driven Design Quickly. InfoQ, 2006.

[2] R. A. Bartlett. Teuchos::RCP : An introduction to the Trilinos smart reference-counted pointer class

for (almost) automatic dynamic memory management in C++. Technical report SAND04-3268,

Sandia National Laboratories, Albuquerque, New Mexico 87185 and Livermore, California 94550,

2004.

[3] R. A. Bartlett. Thyra linear operators and vectors: Overview of interfaces and support software for

the development and interoperability of abstract numerical algorithms. Technical report

SAND2007-5984, Sandia National Laboratories, Albuquerque, New Mexico 87185 and Livermore,

California 94550, 2007.

[4] R. A. Bartlett. Mathematical and high-level overview of MOOCHO: The Multifunctional

Object-Oriented arCHitecture for Optimization. Technical report SAND09-3969, Sandia National

Laboratories, Albuquerque, New Mexico 87185 and Livermore, California 94550, 2009.

[5] R. A. Bartlett. Thyra coding and documentation guidelines (tcdg) version 1.0. Technical report

SAND2010-2051, Albuquerque, New Mexico 87185 and Livermore, California 94550, 2010.

[6] R. A. Bartlett, B. G. van Bloeman Waanders, and M. A. Heroux. Vector reduction/transformation

operators for linear algebra interfaces to efficiently develop complex abstract numerical algorithms

independently of data mapping, 2003. Submitted to ACM TOMS.

[7] BOOST. The BOOST library. http://www.boost.org.

[8] F. Brooks. The Mythical Man-Month (second edition). Addison Wesley, 1995.

[9] J. Coplien. Advanced C++. Addison Wesley, 1992.

[10] Micosoft Corporation. COM: Component object model. http://www.microsoft.com/com.

[11] J. Demmel. Applied Numerical Linear Algebra. SIAM, 1997.

[12] S. Dewhurst. C++ Gotchas. Addison Wesley, 2003.

[13] Glenn Downing, Paul F. Dubois, and Teresa Cottom. Data sharing in scientific simulations.

Computing in Science and Engineering, 6:87–96, 2004.

[14] E. Evans. Domain-Driven Design. Addison Wesley, 2004.

[15] M. Feathers. Working Effectively with Legacy Code. Addison Wesley, 2005.

[16] M. Fowler. UML Distilled (third edition). Addison Wesley, 2004.

[17] E. Gamma et al. Design Patterns: Elements fo Reusable Object-Oriented Software. Addison-Wesley,

1995.

[18] A. Griewank. Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation.

SIAM, 2000.

[19] Object Management Group. CORBA: Common object request broker architecture.

http://www.corba.org.

149

[20] M. Heroux. Design issues for numerical libraries on scalable multicore architectures. Journal of

Physics: Conference Series, 2008.

[21] P. Kambadur1, D. Gregor1, A. Lumsdaine, and A. Dharurkar. Recent Advances in Parallel Virtual

Machine and Message Passing Interface, chapter Modernizing the C++ Interface to MPI, pages

266–274. Springer, 2006.

[22] H. Langtengen and X. Cai. On the efficency of python for high-performance computing: A case study

involving stencil updates for partial differential equations. In H. Bock, E. Kostina, X. Hoang, and

R. Rannacher, editors, Modeling, Simulation and Optimization of Complex Processes: Proceedings of

the Third International Conference on High Performance Scientific Computing, pages 337–358.

Springer-Varlag Berlin Heidelberg, 2008.

[23] R. Martin. Agile Software Development (Principles, Patterns, and Practices). Prentice Hall, 2003.

[24] S. McConnell. Code Complete: Second Edition. Microsoft Press, 2004.

[25] Scott Meyers. More Effective C++. Addison Wesley, 1996.

[26] Scott Meyers. Effective C++ (Third Edition). Addison Wesley, 2005.

[27] E. Phipps, R. Bartlett, and D. Gay. Automatic differentiation of C++ codes for large-scale scientific

computing. Third International Workshop on Automatic Differentiation, February 2006.

[28] B. Stroustrup. The Design and Evolution of C++. Addison-Wesley, New York, 1994.

[29] B. Stroustrup. The C++ Programming Language, special edition. Addison-Wesley, New York, 2000.

[30] B. Stroustrup. Evolving a language in and for the real world: C++ 1991-2006. HOPL III:

Proceedings of the third ACM SIGPLAN conference on History of programming languages, pages

4–1 to 4–59, 2007.

[31] H. Sutter and A. Alexandrescu. C++ Coding Standards: 101 Rules, Guidelines and Best Practices.

Addison Wesley, 2005.

[32] Bart van Bloemen Waanders, Roscoe Bartlett, Kevin Long, Paul Boggs, and Andrew Salinger. Large

scale non-linear programming for PDE constrained optimization. Technical report SAND2002-3198,

Sandia National Laboratories, Albuquerque, New Mexico 87185 and Livermore, California 94550,

2002.

[33] M. VanDerVanter, D.E. Post, and M.E. Zosel. HPC needs a tool strategy. Technical report

LA-UR-05-1592, Las Alamos Laboratories, 2005.

150

A Summary of Teuchos memory management classes and idioms

Basic Teuchos smart pointer types

Non-persisting (and semi-persisting) Persisting

Associations Associations

single objects Ptr<T> RCP<T>

contiguous arrays ArrayView<T> ArrayRCP<T>

Other Teuchos array container classes

Array class Specific use case

Array<T> Contiguous dynamically sizable, expandable, and contractible arrays

Tuple<T,N> Contiguous statically sized (with size N) arrays

Equivalencies for const protection for raw pointers and Teuchos smart pointers types

Description Raw pointer Smart pointer

Basic declaration (non-const obj) typedef A* ptr A RCP<A>

Basic declaration (const obj) typedef const A* ptr const A RCP<const A>

non-const pointer, non-const object ptr A RCP<A>

const pointer, non-const object const ptr A const RCP<A>

non-const pointer, const object ptr const A RCP<const A>

const pointer, const object const ptr const A const RCP<const A>

Summary of operations supported by the basic Teuchos smart pointer types

Operation Ptr<T> RCP<T> ArrayView<T> ArrayRCP<T>

Raw pointer-like functionality

Implicit conv derived to base x x

Implicit conv non-const to const x x x x

Dereference operator*() x x x

Member access operator->() x x x

operator[](i) x x

operators ++, --, +=(i), -=(i) x

Other functionality

Reference counting machinery x x

Iterators: begin(), end() x x

ArrayView subviews x x

Basic implicit and explicit supported conversions for Teuchos smart pointer types

Operation Ptr<T> RCP<T> ArrayView<T> ArrayRCP<T>

Implicit conv derived to base x x

Implicit conv non-const to const x x x x

const cast x x x x

static cast x x

dynamic cast x x

reinterpret cast x x

151

Class Data Members for Value-Type Objects

Data member purpose Data member declaration

non-shared, single, const object const S s ;

non-shared, single, non-const object S s ;

non-shared array of non-const objects Array<S> as ;

shared array of non-const objects RCP<Array<S> > as ;

non-shared statically sized array of non-const objects Tuple<S,N> as ;

shared statically sized array of non-const objects RCP<Tuple<S,N> > as ;

shared fixed-sized array of const objects ArrayRCP<const S> as ;

shared fixed-sized array of non-const objects ArrayRCP<S> as ;

Class Data Members for Reference-Type Objects

Data member purpose Data member declaration

non-shared or shared, single, const object RCP<const A> a ;

non-shared or shared, single, non-const object RCP<A> a ;

non-shared array of const objects Array<RCP<const A> > aa ;

non-shared array of non-const objects Array<RCP<A> > aa ;

shared fixed-sized array of const objects ArrayRCP<RCP<const A> > aa ;

“...” (const ptr) ArrayRCP<const RCP<const A> > aa ;

shared fixed-sized array of non-const objects ArrayRCP<RCP<const A> > aa ;

“...” (const ptr) ArrayRCP<const RCP<const A> > aa ;

152

Passing IN Non-Persisting Associations to Reference (or Value) Objects as Func Args

Argument Purpose Formal Argument Declaration

single, non-changeable object (required) const A &a

single, non-changeable object (optional) const Ptr<const A> &a

single, changeable object (required) const Ptr<A> &a or A &a

single, changeable object (optional) const Ptr<A> &a

array of non-changeable objects const ArrayView<const Ptr<const A> > &aa

array of changeable objects const ArrayView<const Ptr<A> > &aa

Passing IN Persisting Associations to Reference (or Value) Objects as Func Args

Argument Purpose Formal Argument Declaration

single, non-changeable object const RCP<const A> &a

single, changeable object const RCP<A> &a

array of non-changeable objects const ArrayView<const RCP<const A> > &aa

array of changeable objects const ArrayView<const RCP<A> > &aa

Passing OUT Persisting Associations for Reference (or Value) Objects as Func Args

Argument Purpose Formal Argument Declaration

single, non-changeable object const Ptr<RCP<const A> > &a

single, changeable object const Ptr<RCP<A> > &a

array of non-changeable objects const ArrayView<RCP<const A> > &aa

array of changeable objects const ArrayView<RCP<A> > &aa

Passing OUT Semi-Persisting Associations for Reference (or Value) Objects as Func Args

Argument Purpose Formal Argument Declaration

single, non-changeable object const Ptr<Ptr<const A> > &a

single, changeable object const Ptr<Ptr<A> > &a

array of non-changeable objects const ArrayView<Ptr<const A> > &aa

array of changeable objects const ArrayView<Ptr<A> > &aa

153

Passing IN Non-Persisting Associations to Value Objects as Func Args

Argument Purpose Formal Argument Declaration

single, non-changeable object (required) S s or const S s or const S &s

single, non-changeable object (optional) const Ptr<const S> &s

single, changeable object (required) const Ptr<S> &s or S &s

single, changeable object (optional) const Ptr<S> &s

array of non-changeable objects const ArrayView<const S> &as

array of changeable objects const ArrayView<S> &as

Passing IN Persisting Associations to Value Objects as Func Args

(Use cases not covered by reference semantics used for value types)

Argument Purpose Formal Argument Declaration

array of non-changeable objects const ArrayRCP<const S> &as

array of changeable objects const ArrayRCP<S> &ss

Passing OUT Persisting Associations for Value Objects as Func Args

(Use cases not covered by reference semantics used for value types)

Argument Purpose Formal Argument Declaration

array of non-changeable objects const Ptr<ArrayRCP<const S> > &as

array of changeable objects const Ptr<ArrayRCP<S> > &as

Passing OUT Semi-Persisting Associations for Value Objects as Func Args

(Use cases not covered by reference semantics used for value types)

Argument Purpose Formal Argument Declaration

array of non-changeable objects const Ptr<ArrayView<const S> > &as

array of changeable objects const Ptr<ArrayView<S> > &as

154

Returning Non-Persisting Associations to Reference (or Value) Objects

Purpose Return Type Declaration

Single cloned object RCP<A>

Single non-changeable object (required) const A&

Single non-changeable object (optional) Ptr<const A>

Single changeable object (required) A&

Single changeable object (optional) Ptr<A>

Array of non-changeable objects ArrayView<const Ptr<const A> >

Array of changeable objects ArrayView<const Ptr<A> >

Returning Persisting Associations to Reference (or Value) Objects

Purpose Return Type Declaration

Single non-changeable object RCP<const A>

Single changeable object RCP<A>

Array of non-changeable objects ArrayView<const RCP<const A> >

Array of changeable objects ArrayView<const RCP<A> >

Returning Semi-Persisting Associations to Reference (or Value) Objects

Purpose Return Type Declaration

Single non-changeable object Ptr<const A>

Single changeable object Ptr<A>

Array of non-changeable objects ArrayView<const Ptr<const A> >

Array of changeable objects ArrayView<const Ptr<A> >

Returning Non-Persisting Associations to Value Objects

Purpose Return Type Declaration

Single copied object (return by value) S

Single non-changeable object (required) const S&

Single non-changeable object (optional) Ptr<const S>

Single changeable object (required) S&

Single changeable object (optional) Ptr<S>

Array of non-changeable objects ArrayView<const S>

Array of changeable objects ArrayView<S>

Returning Persisting Associations to Value Objects

(Use cases not covered by reference semantics used for value types)

Purpose Return Type Declaration

Array of non-changeable objects ArrayRCP<const S>

Array of changeable objects ArrayRCP<S>

Returning Semi-Persisting Associations to Value Objects

(Use cases not covered by reference semantics used for value types)

Purpose Return Type Declaration

Array of non-changeable objects ArrayView<const S>

Array of changeable objects ArrayView<S>

155

Conversions of data-types for single objects

Conversions of data-types for contiguous arrays

156

Most Common Basic Conversions for Single Object Types
Type To Type From Properties C++ code

RCP<A> A* Ex, Ow rcp(a p) 1

RCP<A> A* Ex, NOw rcp(a p,false) 2

RCP<A> A& Ex, NOw rcpFromRef(a)

RCP<A> A& Ex, NOw rcpFromUndefRef(a)

RCP<A> Ptr<A> Ex, NOw, DR rcpFromPtr(a)

RCP<A> boost::shared ptr<A> Ex, Ow, DR rcp(a sp)

RCP<const A> RCP<A> Im, Ow, DR RCP<const A>(a rcp)

RCP<Base> RCP<Derived> Im, Ow, DR RCP<Base>(derived rcp)

RCP<const Base> RCP<Derived> Im, Ow, DR RCP<const Base>(derived rcp)

boost::shared ptr<A> RCP<A> Ex, Ow, DR shared pointer(a rcp)

A* RCP<A> Ex, NOw a rcp.getRawPtr() 3

A& RCP<A> Ex, NOw *a rcp 4

Ptr<A> A* Ex, NOw ptr(a p) 2

Ptr<A> A& Ex, NOw outArg(a) 5

Ptr<A> RCP<A> Ex, NOw, DR a rcp.ptr()

Ptr<A> RCP<A> Ex, NOw, DR a rcp()

Ptr<A> RCP<A> Ex, NOw, DR ptrFromRCP(a rcp)

Ptr<const A> Ptr<A> Im, NOw, DR Ptr<const A>(a ptr)

Ptr<Base> Ptr<Derived> Im, NOw, DR Ptr<Base>(derived ptr)

Ptr<const Base> Ptr<Derived> Im, NOw, DR Ptr<const Base>(derived ptr)

A* Ptr<A> Ex, NOw a ptr.getRawPtr() 3

A& Ptr<A> Ex, NOw *a ptr() 4

A* A& Ex, NOw &a 3

A& A* Ex, NOw *a p 3

Types/identifiers: A* a p; A& a; Ptr<A> a ptr; RCP<A> a rcp; boost::shared ptr<A> a sp;

Properties: Im = Implicit conversion, Ex = Explicit conversion, Ow = Owning, NOw = Non-Owning, DR = Dangling

Reference debug-mode runtime detection (NOTE: All conversions are shallow conversions, i.e. copies pointers not

objects.)

1. Constructing an owning RCP from a raw C++ pointer is strictly necessary but must be done with great care

according to the commandments in Appendix B.

2. Constructing a non-owning RCP or Ptr directly from a raw C++ pointer should never be needed in fully com-

pliant code. However, when inter-operating with non-compliant code (or code in an intermediate state of

refactoring) this type of conversion will be needed.

3. Exposing a raw C++ pointer and raw pointer manipulation should never be necessary in compliant code but

may be necessary when inter-operating with external code (see Section 5.2).

4. Exposing a raw C++ reference will be common in compliant code but should only be used for non-persisting

associations.

5. See other helper constructors for passing Ptr described in Section 5.4.1.

157

Most Common Basic Conversions for Contiguous Array Types
Type To Type From Properties C++ code (or impl function)

ArrayRCP<S> S* Sh, Ex, Ow arcp(s p,0,n) 1

ArrayRCP<S> S* Sh, Ex, NOw arcp(s p,0,n,false) 2

ArrayRCP<S> Array<S> Sh, Ex, NOw, DR arcpFromArray(s a)

ArrayRCP<S> ArrayView<S> Sh, Ex, NOw, DR arcpFromArrayView(s av)

ArrayRCP<S> ArrayView<S> Dp, Ex, Ow arcpClone(s av)

ArrayRCP<S> RCP<Array<S> > Sh, Ex, Ow, DR arcp(s a rcp)

ArrayRCP<const S> RCP<const Array<S> > Sh, Ex, Ow, DR arcp(cs a rcp)

ArrayRCP<const S> ArrayRCP<S> Sh, Im, Ow, DR ArrayRCP::operator()()

S* ArrayRCP<S> Sh, Ex, NOw s arcp.getRawPtr() 3

S& ArrayRCP<S> Sh, Ex, NOw s arcp[i] 4

ArrayView<S> S* Sh, Ex, NOw arrayView(s p,n) 1

ArrayView<S> Array<S> Sh, Im, NOw, DR Array::operator ArrayView()

ArrayView<S> Tuple<S> Sh, Im, NOw, DR Tuple::operator ArrayView()

ArrayView<S> std::vector<S> Sh, Im, NOw ArrayView<S>(s v)

ArrayView<S> ArrayRCP<S> Sh, Ex, NOw, DR ArrayRCP::operator()()

ArrayView<const S> const Array<S> Sh, Im, NOw, DR Array::operator ArrayView()

ArrayView<const S> const Tuple<S> Sh, Im, NOw, DR Tuple::operator ArrayView()

ArrayView<const S> const std::vector<S> Sh, Im, NOw ArrayView(cs v)

ArrayView<const S> ArrayRCP<const S> Sh, Ex, NOw, DR ArrayRCP::operator ArrayView()

S* ArrayView<S> Ex, NOw s av.getRawPtr() 3

S& ArrayView<S> Ex, NOw s av[i] 4

Array<S> S* Dp, Ex Array<S>(s p,s p+n)

Array<S> std::vector<S> Dp, Im Array<S>(s v)

Array<S> ArrayView<S> Dp, Im Array<S>(s av)

Array<S> Tuple<S,N> Dp, Im Array<S>(s t)

Array<S> ArrayRCP<S> Dp, Ex Array<S>(s arcp());

std::vector<S> Array<S> Dp, Ex s a.toVector();

S* Array<S> Ex, NOw s a.getRawPtr() 3

S& Array<S> Ex, NOw s a[i] 4

Types/identifiers: S* s p; ArrayView<S> s av; ArrayRCP<S> s arcp; Array<S> s a; Tuple<S,N> s t;

std::vector<S> s v; RCP<Array<S> > s a rcp; RCP<const Array<S> > cs a rcp;

Properties: Sh = Shallow copy, Dp = Deep copy (dangling references not an issue), Im = Implicit conversion, Ex =

Explicit conversion, Ow = Owning (dangling references not an issue), NOw = Non-Owning, DR = Dangling Reference

debug-mode runtime detection for non-owning

1. It should never be necessary to convert from a raw pointer to an owning ArrayRCP object directly. Instead, use

the non-member constructor arcp<S>(n).

2. Constructing a non-owning ArrayRCP or ArrayView directly from a raw C++ pointer should never be needed

in fully compliant code. However, when inter-operating with non-compliant code (or code in an intermediate

state of refactoring) this type of conversion will be needed.

3. Exposing a raw C++ pointer should never be necessary in compliant code but may be necessary when inter-

operating with external code (see Section 5.2).

4. Exposing a raw C++ reference will be common in compliant code but should only be used for non-persisting

associations.

158

B Commandments for the use of the Teuchos memory management classes

Here are stated commandments (i.e. very strongly recommended guidelines) that if followed, along with

the idioms defined in Section 5.8, then client code will be nearly 100% safe through debug-mode runtime

checking and will almost never result in undefined behavior (e.g. segfaults) or a memory leak (except for

circular references as described in Section 5.11.2). While there will be situations where it is justified to

violate almost any of these commandments, they should be valid in 99% of a well written code base.

Commandment 1 Thou shall not expose raw pointers in any high-level C++ code.

Exception: Only expose raw pointers when interfacing with non-compliant code or momentarily in order to

construct a Teuchos memory management class object. However, these cases should be encapsulated as

low-level code.

Commandment 2 Thou shall only use raw C++ references for non-persisting associations (see

Sections 4.2 and 5.4.3).

Commandment 3 Thou shall use RCP for handling single objects for all persisting associations (see

Section 4.2).

Commandment 4 Thou shall put a pointer for an object allocated with operator new into a strong

owning RCP whenever possible by directly calling new right in the constructor for the RCP object itself or

construct from rcp(...).

Commandment 5 When wrapping an object inside of an RCP, thou shall create a strong owning RCP

object first before any non-owning RCP objects (see Sections 5.11.4 and 5.13.3).

Justification: In order for the reference-counting machinery to detect dangling non-owning references in a

debug-mode build, the first RCP object created must have ownership to delete. The system cannot detect

dangling references from non-owning RCPNode objects created before an owning RCPNode object is

created.

Commandment 6 Thou shall use Ptr for handling single objects for all semi-persisting associations (see

Section 4.2).

Justification: When performance constraints do not allow for the reference-counting overhead of RCP, then

Ptr can be used instead to form a semi-persisting association (which should be accompanied with the

appropriate documentation about the performance optimization). One should never have to retreat back to

using a raw pointer in these cases. At least with Ptr, invalid usage will be checked for in a debug build so

one does not loose any debug-mode runtime checking when using Ptr instead of RCP if one really does not

need reference-counting machinery.

159

Commandment 7 Thou shall use ArrayRCP for handling all contiguous arrays of objects for all

persisting associations where the array does not need to be incrementally resized while sharing the array

(see Sections 4.2 and 5.8.2).

Commandment 8 Thou shall use ArrayView for handling contiguous arrays of objects for all

semi-persisting associations (see Sections 4.2 and 5.12.3).

Justification: When performance constraints do not allow for the reference-counting overhead of

ArrayRCP, then ArrayView can be used instead to form a semi-persisting association (which should be

accompanied with the appropriate documentation about the performance optimization). One should never

have to retreat back to using a raw pointer in these cases. At least with ArrayView, invalid usage will be

checked for in a debug build so one does not loose any debug-mode runtime checking when using

ArrayView instead of ArrayRCP if one really does not need reference-counting machinery.

Commandment 9 Thou shall not call raw new or delete in any high-level C++ code to dynamically

allocate and destroy single objects. Instead, create memory using a user-defined non-member constructor

function (see Section 5.8.1).

Exception: Calling raw new in okay when an appropriate non-member constructor is missing. In general,

value-type classes (e.g. std::vector) will not have non-member constructor functions that return

RCP-wrapped objects.

Commandment 10 Thou shall not call raw operator new [] or delete [] in any high-level C++

code to dynamically allocate and destroy contiguous arrays of data. Instead, use functions such as

Teuchos::Array<T>(n) and Teuchos::arcp<T>(n) to dynamically allocate arrays.

Commandment 11 Thou shall not directly create and use compile-time fixed sized arrays with T[N].

Instead, create compile-time fixed-sized arrays using Teuchos::Tuple<T,N> and convert to

Teuchos::ArrayView<T> for more general usage.

Commandment 12 Thou shall use Teuchos::Array as a general purpose contiguous container

instead of std::vector in order maximize debug-mode runtime checking (see Sections 5.5.3

and 5.11.3).

Commandment 13 Thou shall only convert or cast between different memory management objects (of the

same or different types) using the provided implicit and explicit conversion functions (see Section 5.7).

Thou shall never expose a raw C++ pointer to perform a conversion.

Exception: Some very advanced and rare use cases might have one exposing a raw C++ pointer (see

Section 5.13.1 for the only example described in this paper).

Commandment 14 Thou shall only pass in the types Ptr, RCP, ArrayView, and ArrayRCP by

constant reference (e.g. const RCP<T> &a) and never by non-const reference (e.g. never do RCP<T>

&a).

160

Exception: The only time one should ever pass in a non-const reference to one of these types (e.g. RCP<T>

&a) is when the function will modify what data the object points to. However, if this is the case, it is

typically better and more clear to pass in the object through a Ptr object (e.g. const Ptr<RCP<T> > &a)

using the outArg(...) function (see Section 5.8.4).

Commandment 15 Thou shall only reutrn objects of type Ptr, RCP, ArrayView, and ArrayRCP from

a function by value and not a constant reference (see Section 5.8.5).

Exception: Returning one of these types by non-const reference makes sense when using the local static

variable initialization trick described in [26, Item 4]. However, returning one of these types by const

reference would almost never be justified.

161

C Argument for using a signed integer for size type in the Teuchos

array classes

The Teuchos array memory management classes Array, ArrayRCP, and ArrayView all use a signed integer

for size type (ptrdiff t by default). This breaks from the C++ standard library convention of the

standard containers like std::vector that all use an unsigned integer for size type (which is size t in

most implementations). The primary disadvantage for using an unsigned integral type is that subtractions

that would normally produce a negative number instead roll over into a huge positive number, making it

more difficult to debug problems. For example, consider the simple program shown in Listing 127:

Listing 127 : Example program showing the problem with unsigned integral types

#include <iostream>

#include <string>

typedef unsigned long int size_type ;

void print_val(const std::string &valName, const size_type val)

{ std::cout << valName << " = " << val << "\n";}

int main()

{

const size_type a = 5, b = 7;

const size_type c = b - a;

const size_type d = a - b;

print_val("a", a);

print_val("b", b);

print_val("b - a", c);

print_val("a - b", d);

return 0;

}

When the above program is compiled with GCC 3.4.6 on a 64 bit Linux machine and run it produces the

output:

a = 5

b = 7

b - a = 2

a - b = 18446744073709551614

In the above program, the subtraction of a - b is a programming error but that error results in the number

18446744073709551614 when using an unsigned type. Getting a number like 18446744073709551614 in

program output or in the debugger does not exactly give a great hint as to what the problem might be. Was

uninitialized memory used to produce this result? Is there some other memory usage problem that would

cause the program to produce a ridiculous result such as this? It is problems like this that greatly contribute

to the accidental complexity that is inherent in C/C++ programing (see Section 6.1).

However, when unsigned long int is replaced with long int in Listing 127 and the code is rebuilt and

run one gets:

162

a = 5

b = 7

b - a = 2

a - b = -2

Now, getting output like -2 when a positive number is expected is much easier to debug. The chance of

getting -2 as the result of a memory usage error is very unlikely. This would immediately be flagged as a

subtraction error in the program and quickly tracked down and fixed. Therefore, from a program

correctness and debugging perspective, signed integral types are far superior to unsigned types.

So if programs with unsigned integers are harder to debug when things go wrong, then what are the

advantages of using an unsigned type? Well, some might argue that using an unsigned type for integral

objects that that can only be non-negative in valid programs helps to make the code self documenting. This

is partially true but one can achieve the same result by using a typedef to make the usage expectation clear

(e.g. size type).

So what then is left as the real advantage for using an unsigned integral type? The only real advantage of an

unsigned integral type (e.g. unsigned int) over a signed integral type (e.g. int) is that unsigned integral

type objects can represent twice the positive range as the equivalent signed integral type objects. For

smaller integral types like char and and short int, having twice the range can be quite useful. However,

on 32 bit and 64 bit modern computers, using an unsigned [long] int instead of a [long] int as the

size for a container is quite worthless. On a 64 bit Linux machine with GCC 3.4.6, the sizes of several

integral types pertinent to this discussion are shown in Listing 128.

Listing 128 : Sizes and ranges of some common integral types of GCC on a 64 bit Linux machine

sizeof(int) = 4

std::numeric_limits<int>::min()= -2147483648

std::numeric_limits<int>::max()= 2147483647

std::log10(std::numeric_limits<int>::max())= 9.33193

sizeof(unsigned int) = 4

std::numeric_limits<unsigned int>::min()= 0

std::numeric_limits<unsigned int>::max()= 4294967295

std::log10(std::numeric_limits<unsigned int>::max())= 9.63296

sizeof(long int) = 8

std::numeric_limits<long int>::min()= -9223372036854775808

std::numeric_limits<long int>::max()= 9223372036854775807

std::log10(std::numeric_limits<long int>::max())= 18.9649

sizeof(unsigned long int) = 8

std::numeric_limits<unsigned long int>::min()= 0

std::numeric_limits<unsigned long int>::max()= 18446744073709551615

std::log10(std::numeric_limits<unsigned long int>::max())= 19.2659

sizeof(size_t) = 8

std::numeric_limits<size_t>::min()= 0

std::numeric_limits<size_t>::max()= 18446744073709551615

std::log10(std::numeric_limits<size_t>::max())= 19.2659

163

sizeof(ptrdiff_t) = 8

std::numeric_limits<ptrdiff_t>::min()= -9223372036854775808

std::numeric_limits<ptrdiff_t>::max()= 9223372036854775807

std::log10(std::numeric_limits<ptrdiff_t>::max())= 18.9649

On a 32 bit machine, size t is a 4 bit unsigned int and ptrdiff t is a 4 bit int. The standard C library

typedef size t is guaranteed to be the largest possible object size returned from sizeof(...) and is also

used for functions like malloc(...). The standard C library typedef ptrdiff t is supposed to be

guaranteed to hold the difference between the subtraction of any two pointers in the largest allocatable

array. Right here lies the first problem with this approach as shown in the simple program in Listing 129.

Listing 129 : Simple program showing the fundamental incompatibility of size t and ptrdiff t.

#include <iostream>

#include <string>

#include <limits>

template<typename T>

void print_val(const std::string &valName, const T val)

{ std::cout << valName << " = " << val << "\n";}

int main()

{

const size_t maxSize = std::numeric_limits<size_t>::max();

const size_t size = static_cast<size_t>(0.75 * maxSize);

char *a = new char[size];

ptrdiff_t a_diff = (a+size) - a;

print_val("maxSize", maxSize);

print_val("size", size);

print_val("a+size - a", a_diff);

delete a;

return 0;

}

The program in Listing 129 allocates a char array 75% the size of the maximum allowed by size t. In

this program, size is 50% larger than the largest value that can be represented by the signed type

ptrdiff t (which is the type as int in this case). When this program is compiled with GCC 3.4.6 in 32 bit

mode (i.e. with -m32) and run it produces the following output:

maxSize = 4294967295

size = 3221225471

a+size - a = -1073741825

The value of ptr2 - ptr1 = -1073741825 where ptr1 = a and ptr2 = a+size is totally wrong. What

this output suggests is that ptr2 = a+size is 1073741825 elements in front of ptr1 = a which is

completely wrong when in actuality ptr2 = a+size is size = 3221225471 elements after ptr1 = a.

What this 32 bit output confirms is that it false to claim that ptrdiff t can store the difference between

164

any two pointers in a single array of data. Perhaps that was true on the machines when C was first

developed the early 1970’s but it is not true today where machines with 4+ GB of memory are common.

Now consider practical usage of types like std::vector on modern machines. First, consider what it

would mean to allocate the largest std::vector of even chars. A char is 1 byte so on a 32 bit machine,

an std::vector<char> of max size would have 4294967295 bytes = 4.3 GB of memory. That would

exhaust all of the memory of a 4 GB machine and more. Being limited to only half the range of size t

(which is the positive range representable by ptrdiff t) would give an std::vector<char> that takes up

2.3 GB of memory. No real 32 bit program is ever going to allocate a single std::vector of chars that

takes up more than half of the addressable memory of the entire machine! It is hard to imagine what useful

task such a program would perform.

When one moves up to an std::vector<int> for a 32 bit (4 byte) int the maximum size of array that one

can create is 4294967295 * 4 / 1e+9 = 17.2 GB. Being limited to the unsigned int type ptrdiff t

would limit one to an std::vector<int> of size 8.6 GB which is already twice the addressable memory

of a 32 bit system.

Therefore, even on a 32 bit machine, limiting the maximum size of std::vector objects to have only

std::numeric limits<ptrdiff t)>::max() = 2.3×109 elements is really not any kind of limit at all.

For any reasonable program on any reasonable 32 bit machine one cannot even store that much memory.

On a 64 bit machine this of course becomes silly. By limiting the maximum number of elements in an

std::vector<char> (not to mention arrays with larger data types) to be

std::numeric limits<ptrdiff t)>::max() on 64 bit machine would mean that one would take up

18446744073709551615 / 2 = 9.2e+9 GB of memory to allocate a single array! We will likely never in

human history ever see a machine with 2×109 GB of memory in a single address space.

In summary, limiting the maximum number of elements in an std::vector (and therefore Teuchos

Array) to be half of size t using the long signed int type ptrdiff t for size type is not any kind of

limit at all in any realistic 32 bit program and especially not a 64 bit program.

Therefore, the Teuchos array memory management classes all use by default ptrdiff t as size type

because of the inherent debugging and other advantages of using a signed integral type instead of an

unsigned type and with no real advantages at all for using size t over ptrdiff t.

165

D Raw performance data

D.1 Raw RCP performance data

Listing 130 : Raw RCP timing data on GCC 4.1.2

0. RCP_createDestroyOverhead_UnitTest ...

Messuring the overhead of creating and destorying objects of different sizes

using raw C++ pointers, shared_ptr, and using RCP.

Number of loops = relCpuSpeed/relTestCost = 5e+03/0.001 = 5e+06

obj size num loops raw shared_ptr RCP shared_ptr/raw RCP/raw

--------- --------- -------------- -------------- -------------- -------------- --------------

1 3465735 7.407462e-08 1.215497e-07 1.398462e-07 1.640909e+00 1.887910e+00

4 2011797 7.450006e-08 1.239370e-07 1.413890e-07 1.663582e+00 1.897838e+00

16 885379 8.031363e-08 1.284388e-07 1.467530e-07 1.599215e+00 1.827249e+00

64 326124 1.130889e-07 1.589150e-07 1.792815e-07 1.405222e+00 1.585315e+00

256 108380 2.369718e-07 2.786677e-07 2.359753e-07 1.175953e+00 9.957949e-01

1024 33849 5.029395e-07 5.578008e-07 5.812875e-07 1.109081e+00 1.155780e+00

4096 10153 1.552546e-06 1.608293e-06 1.630947e-06 1.035907e+00 1.050498e+00

16384 2961 5.759541e-06 5.821344e-06 5.840932e-06 1.010731e+00 1.014132e+00

65536 846 2.503073e-05 2.513239e-05 2.515721e-05 1.004061e+00 1.005053e+00

1. RCP_dereferenceOverhead_UnitTest ...

Messuring the overhead of dereferencing RCP, shared_ptr and a raw pointer.

array dim num loops raw shared_ptr RCP RCP/raw RCP/shared_ptr

--------- --------- -------------- -------------- -------------- -------------- --------------

64 3261240 7.765547e-10 1.037752e-09 6.958626e-10 8.960896e-01 6.705479e-01

256 1083803 7.295887e-10 8.572714e-10 7.611003e-10 1.043191e+00 8.878173e-01

1024 338498 7.117812e-10 8.238572e-10 7.125746e-10 1.001115e+00 8.649249e-01

4096 101538 7.187575e-10 1.155846e-09 1.192136e-09 1.658607e+00 1.031397e+00

16384 29614 8.350258e-10 1.155404e-09 1.190919e-09 1.426207e+00 1.030739e+00

65536 8461 8.362559e-10 1.155293e-09 1.199785e-09 1.434711e+00 1.038512e+00

2. RCP_memberAccessOverhead_UnitTest ...

Messuring the overhead of dereferencing RCP, shared_ptr and a raw pointer.

array dim num loops raw shared_ptr RCP RCP/raw RCP/shared_ptr

--------- --------- -------------- -------------- -------------- -------------- --------------

64 3261240 7.794917e-10 1.037733e-09 6.954218e-10 8.921479e-01 6.701355e-01

256 1083803 7.295743e-10 8.639896e-10 7.611075e-10 1.043221e+00 8.809221e-01

1024 338498 7.115158e-10 8.325987e-10 7.242242e-10 1.017861e+00 8.698358e-01

4096 101538 7.252928e-10 1.156058e-09 1.192244e-09 1.643811e+00 1.031302e+00

16384 29614 8.369755e-10 1.154404e-09 1.190985e-09 1.422963e+00 1.031688e+00

65536 8461 8.364092e-10 1.154440e-09 1.199527e-09 1.434139e+00 1.039056e+00

3. RCP_referenceCountManipulationOverhead_UnitTest ...

Messuring the overhead of incrementing and deincrementing the reference count

comparing RCP to raw pointer and boost::shared_ptr.

array dim num loops raw shared_ptr RCP RCP/raw RCP/shared_ptr

--------- --------- -------------- -------------- -------------- -------------- --------------

64 65224 1.554978e-09 4.145809e-09 6.009579e-09 3.864736e+00 1.449555e+00

256 21676 7.138151e-10 4.221439e-09 5.832524e-09 8.170916e+00 1.381644e+00

1024 6769 6.919181e-10 4.224365e-09 5.589158e-09 8.077773e+00 1.323076e+00

4096 2030 6.863599e-10 4.226880e-09 6.094856e-09 8.879972e+00 1.441928e+00

16384 592 6.854083e-10 4.224623e-09 6.234040e-09 9.095367e+00 1.475644e+00

65536 169 6.848397e-10 4.228219e-09 6.216828e-09 9.077785e+00 1.470318e+00

166

Listing 131 : Raw RCP timing data on Intel ICC 10.1

0. RCP_createDestroyOverhead_UnitTest ...

Messuring the overhead of creating and destorying objects of different sizes

using raw C++ pointers, shared_ptr, and using RCP.

Number of loops = relCpuSpeed/relTestCost = 5e+03/0.001 = 5e+06

obj size num loops raw shared_ptr RCP shared_ptr/raw RCP/raw

--------- --------- -------------- -------------- -------------- -------------- --------------

1 3465735 1.157942e-07 1.941906e-07 2.041379e-07 1.677032e+00 1.762938e+00

4 2011797 1.194609e-07 1.984465e-07 2.031149e-07 1.661184e+00 1.700263e+00

16 885379 1.200751e-07 2.013262e-07 2.105720e-07 1.676669e+00 1.753668e+00

64 326124 1.390085e-07 2.170309e-07 2.277876e-07 1.561279e+00 1.638660e+00

256 108380 3.299409e-07 4.036446e-07 4.223381e-07 1.223384e+00 1.280041e+00

1024 33849 6.118349e-07 7.350291e-07 7.567432e-07 1.201352e+00 1.236842e+00

4096 10153 1.724909e-06 1.833645e-06 1.851472e-06 1.063039e+00 1.073374e+00

16384 2961 6.138467e-06 6.252955e-06 6.269504e-06 1.018651e+00 1.021347e+00

65536 846 2.482151e-05 2.497754e-05 2.505437e-05 1.006286e+00 1.009381e+00

1. RCP_dereferenceOverhead_UnitTest ...

Messuring the overhead of dereferencing RCP, shared_ptr and a raw pointer.

array dim num loops raw shared_ptr RCP RCP/raw RCP/shared_ptr

--------- --------- -------------- -------------- -------------- -------------- --------------

64 3261240 6.909757e-10 3.551453e-09 1.027399e-09 1.486881e+00 2.892897e-01

256 1083803 7.113406e-10 3.384829e-09 7.973226e-10 1.120873e+00 2.355577e-01

1024 338498 6.914017e-10 2.841675e-09 7.658747e-10 1.107713e+00 2.695152e-01

4096 101538 6.864300e-10 3.701316e-09 9.940787e-10 1.448187e+00 2.685744e-01

16384 29614 7.319499e-10 3.367334e-09 9.934011e-10 1.357198e+00 2.950112e-01

65536 8461 7.317167e-10 2.931704e-09 9.912099e-10 1.354636e+00 3.381003e-01

2. RCP_memberAccessOverhead_UnitTest ...

Messuring the overhead of dereferencing RCP, shared_ptr and a raw pointer.

array dim num loops raw shared_ptr RCP RCP/raw RCP/shared_ptr

--------- --------- -------------- -------------- -------------- -------------- --------------

64 3261240 6.899839e-10 6.952541e-10 8.252660e-10 1.196066e+00 1.186999e+00

256 1083803 7.112650e-10 7.159684e-10 7.949727e-10 1.117688e+00 1.110346e+00

1024 338498 6.911940e-10 6.924634e-10 7.741691e-10 1.120046e+00 1.117993e+00

4096 101538 6.863435e-10 7.000054e-10 9.928501e-10 1.446579e+00 1.418346e+00

16384 29614 7.326919e-10 8.507246e-10 9.953219e-10 1.358445e+00 1.169970e+00

65536 8461 7.315725e-10 8.489935e-10 9.923713e-10 1.356491e+00 1.168880e+00

3. RCP_referenceCountManipulationOverhead_UnitTest ...

Messuring the overhead of incrementing and deincrementing the reference count

comparing RCP to raw pointer and boost::shared_ptr.

array dim num loops raw shared_ptr RCP RCP/raw RCP/shared_ptr

--------- --------- -------------- -------------- -------------- -------------- --------------

64 65224 1.032260e-09 5.619576e-09 8.805472e-09 8.530285e+00 1.566928e+00

256 21676 7.246278e-10 5.881181e-09 8.692109e-09 1.199527e+01 1.477953e+00

1024 6769 7.678041e-10 6.050677e-09 8.797574e-09 1.145810e+01 1.453982e+00

4096 2030 7.621277e-10 5.988180e-09 8.991230e-09 1.179754e+01 1.501496e+00

16384 592 8.004678e-10 6.102691e-09 8.966497e-09 1.120157e+01 1.469269e+00

65536 169 7.999578e-10 6.108933e-09 8.973161e-09 1.121704e+01 1.468859e+00

167

Listing 132 : Raw RCP timing data on MSVC++ 2009

0. RCP_createDestroyOverhead_UnitTest ...

Messuring the overhead of creating and destorying objects of different sizes

using raw C++ pointers, shared_ptr, and using RCP.

Number of loops = relCpuSpeed/relTestCost = 5e+003/0.001 = 5e+006

obj size num loops raw shared_ptr RCP shared_ptr/raw RCP/raw

--------- --------- -------------- -------------- -------------- -------------- --------------

1 3465735 2.628591e-007 3.641363e-007 4.117453e-007 1.385291e+000 1.566411e+000

4 2011797 2.390897e-007 3.718069e-007 4.130635e-007 1.555094e+000 1.727651e+000

16 885379 2.484812e-007 3.885342e-007 4.303242e-007 1.563636e+000 1.731818e+000

64 326124 2.882339e-007 4.262182e-007 4.660804e-007 1.478723e+000 1.617021e+000

256 108380 4.336593e-007 5.628345e-007 5.997416e-007 1.297872e+000 1.382979e+000

1024 33849 9.749180e-007 1.093090e-006 1.122633e-006 1.121212e+000 1.151515e+000

4096 10153 3.250271e-006 3.250271e-006 3.348764e-006 1.000000e+000 1.030303e+000

16384 2961 1.182033e-005 1.350895e-005 1.215805e-005 1.142857e+000 1.028571e+000

65536 846 4.609929e-005 4.609929e-005 4.609929e-005 1.000000e+000 1.000000e+000

1. RCP_dereferenceOverhead_UnitTest ...

Messuring the overhead of dereferencing RCP, shared_ptr and a raw pointer.

array dim num loops raw shared_ptr RCP RCP/raw RCP/shared_ptr

--------- --------- -------------- -------------- -------------- -------------- --------------

64 3261240 1.034882e-009 1.034882e-009 6.995039e-010 6.759259e-001 6.759259e-001

256 1083803 1.052428e-009 1.052428e-009 7.136329e-010 6.780822e-001 6.780822e-001

1024 338498 1.035711e-009 1.038596e-009 6.952820e-010 6.713092e-001 6.694444e-001

4096 101538 1.021881e-009 1.043521e-009 1.012263e-009 9.905882e-001 9.700461e-001

16384 29614 1.088221e-009 1.141807e-009 1.020207e-009 9.375000e-001 8.935018e-001

65536 8461 1.082056e-009 1.141569e-009 1.011722e-009 9.350000e-001 8.862559e-001

2. RCP_memberAccessOverhead_UnitTest ...

Messuring the overhead of dereferencing RCP, shared_ptr and a raw pointer.

array dim num loops raw shared_ptr RCP RCP/raw RCP/shared_ptr

--------- --------- -------------- -------------- -------------- -------------- --------------

64 3261240 1.039674e-009 1.044465e-009 1.015718e-009 9.769585e-001 9.724771e-001

256 1083803 1.045220e-009 1.048824e-009 7.136329e-010 6.827586e-001 6.804124e-001

1024 338498 1.032826e-009 1.038596e-009 6.923970e-010 6.703911e-001 6.666667e-001

4096 101538 1.029094e-009 1.053139e-009 1.009859e-009 9.813084e-001 9.589041e-001

16384 29614 1.077915e-009 1.135624e-009 1.007841e-009 9.349904e-001 8.874773e-001

65536 8461 1.080252e-009 1.137962e-009 1.018936e-009 9.432387e-001 8.954041e-001

3. RCP_referenceCountManipulationOverhead_UnitTest ...

Messuring the overhead of incrementing and deincrementing the reference count

comparing RCP to raw pointer and boost::shared_ptr.

array dim num loops raw shared_ptr RCP RCP/raw RCP/shared_ptr

--------- --------- -------------- -------------- -------------- -------------- --------------

64 65224 7.186772e-010 5.270299e-009 1.413398e-008 1.966667e+001 2.681818e+000

256 21676 3.604217e-010 4.144849e-009 1.261476e-008 3.500000e+001 3.043478e+000

1024 6769 1.442698e-010 4.183825e-009 1.269575e-008 8.800000e+001 3.034483e+000

4096 2030 2.405326e-010 4.089055e-009 1.274823e-008 5.300000e+001 3.117647e+000

16384 592 3.092998e-010 4.227097e-009 1.278439e-008 4.133333e+001 3.024390e+000

65536 169 2.708661e-010 4.153280e-009 1.291128e-008 4.766667e+001 3.108696e+000

168

D.2 Raw Array performance data

Listing 133 : Raw Array timing data on GCC 4.1.2

0. Array_braketOperatorOverhead_UnitTest ...

Measuring the overhead of the Array braket operator relative to raw pointers.

Number of loops = relCpuSpeed/relTestCost = 5e+03/0.0001 = 5e+07

array dim num loops raw ptr vector Array vector/raw Array/raw

--------- --------- -------------- -------------- -------------- -------------- --------------

100 2307560 4.244007e-10 4.244137e-10 4.244440e-10 1.000031e+00 1.000102e+00

400 749245 3.631856e-10 3.629053e-10 3.629787e-10 9.992283e-01 9.994304e-01

1600 230574 3.475457e-10 3.475999e-10 3.476270e-10 1.000156e+00 1.000234e+00

6400 68470 5.450882e-10 5.452091e-10 5.367154e-10 1.000222e+00 9.846397e-01

1. Array_iteratorOverhead_UnitTest ...

Measuring the overhead of the Array iterators relative to raw pointers.

Number of loops = relCpuSpeed/relTestCost = 5e+03/0.0001 = 5e+07

array dim num loops raw ptr vector Array vector/raw Array/raw

--------- --------- -------------- -------------- -------------- -------------- --------------

100 2307560 4.620638e-10 4.725251e-10 4.757363e-10 1.022640e+00 1.029590e+00

400 749245 3.722247e-10 3.979673e-10 3.989416e-10 1.069159e+00 1.071776e+00

1600 230574 3.498009e-10 3.796775e-10 3.797046e-10 1.085410e+00 1.085488e+00

6400 68470 5.465578e-10 5.450813e-10 5.454967e-10 9.972986e-01 9.980585e-01

2. ArrayRCP_braketOperatorOverhead_UnitTest ...

Measuring the overhead of the ArrayRCP braket operator relative to raw pointers.

Number of loops = relCpuSpeed/relTestCost = 5e+03/0.0001 = 5e+07

array dim num loops raw ptr ArrayRCP ArrayRCP/raw

--------- --------- -------------- -------------- --------------

100 2307560 4.620552e-10 4.449722e-10 9.630283e-01

400 749245 3.722748e-10 3.680972e-10 9.887783e-01

1600 230574 3.498687e-10 3.486869e-10 9.966221e-01

6400 68470 5.456381e-10 6.259333e-10 1.147158e+00

3. ArrayRCP_iteratorOverhead_UnitTest ...

Measuring the overhead of the ArrayRCP iterators relative to raw pointers.

Number of loops = relCpuSpeed/relTestCost = 5e+03/0.0001 = 5e+07

array dim num loops raw ptr ArrayRCP ArrayRCP/raw

--------- --------- -------------- -------------- --------------

100 2307560 4.414750e-10 4.451065e-10 1.008226e+00

400 749245 3.670995e-10 3.679571e-10 1.002336e+00

1600 230574 3.485405e-10 3.488902e-10 1.001003e+00

6400 68470 5.448531e-10 5.452068e-10 1.000649e+00

4. ArrayRCP_selfIteratorOverhead_UnitTest ...

Measuring the overhead of the ArrayRCP as a self iterataor relative to raw pointers.

Number of loops = relCpuSpeed/relTestCost = 5e+03/0.0001 = 5e+07

array dim num loops raw ptr ArrayRCP ArrayRCP/raw

--------- --------- -------------- -------------- --------------

100 2307560 4.587616e-10 8.386087e-10 1.827984e+00

400 749245 3.713705e-10 7.234583e-10 1.948077e+00

1600 230574 3.497250e-10 6.945384e-10 1.985956e+00

169

6400 68470 5.297461e-10 6.887003e-10 1.300057e+00

5. ArrayView_braketOperatorOverhead_UnitTest ...

Measuring the overhead of the ArrayView braket operator relative to raw pointers.

Number of loops = relCpuSpeed/relTestCost = 5e+03/0.0001 = 5e+07

array dim num loops raw ptr ArrayView ArrayView/raw

--------- --------- -------------- -------------- --------------

100 2307560 4.621072e-10 4.244570e-10 9.185250e-01

400 749245 3.722814e-10 3.627618e-10 9.744291e-01

1600 230574 3.499283e-10 3.474156e-10 9.928192e-01

6400 68470 5.455994e-10 5.369824e-10 9.842065e-01

6. ArrayView_iteratorOverhead_UnitTest ...

Measuring the overhead of the ArrayView iterators relative to raw pointers.

Number of loops = relCpuSpeed/relTestCost = 5e+03/0.0001 = 5e+07

array dim num loops raw ptr ArrayView ArrayView/raw

--------- --------- -------------- -------------- --------------

100 2307560 4.588396e-10 4.552254e-10 9.921232e-01

400 749245 3.716074e-10 3.705230e-10 9.970818e-01

1600 230574 3.495732e-10 3.493184e-10 9.992711e-01

6400 68470 5.299196e-10 5.453255e-10 1.029072e+00

170

Listing 134 : Raw Array timing data on ICC 10.1

0. Array_braketOperatorOverhead_UnitTest ...

Measuring the overhead of the Array braket operator relative to raw pointers.

Number of loops = relCpuSpeed/relTestCost = 5e+03/0.0001 = 5e+07

array dim num loops raw ptr vector Array vector/raw Array/raw

--------- --------- -------------- -------------- -------------- -------------- --------------

100 2307560 9.041672e-10 1.092201e-09 1.092210e-09 1.207964e+00 1.207973e+00

400 749245 8.995689e-10 1.207742e-09 1.121359e-09 1.342579e+00 1.246551e+00

1600 230574 8.816611e-10 1.154434e-09 1.172907e-09 1.309385e+00 1.330338e+00

6400 68470 9.466212e-10 1.240822e-09 1.252366e-09 1.310790e+00 1.322986e+00

1. Array_iteratorOverhead_UnitTest ...

Measuring the overhead of the Array iterators relative to raw pointers.

Number of loops = relCpuSpeed/relTestCost = 5e+03/0.0001 = 5e+07

array dim num loops raw ptr vector Array vector/raw Array/raw

--------- --------- -------------- -------------- -------------- -------------- --------------

100 2307560 6.093189e-10 6.334830e-10 5.921796e-10 1.039657e+00 9.718714e-01

400 749245 6.862308e-10 6.941621e-10 6.795441e-10 1.011558e+00 9.902559e-01

1600 230574 6.543805e-10 6.653910e-10 6.629027e-10 1.016826e+00 1.013023e+00

6400 68470 7.261278e-10 7.312829e-10 7.259452e-10 1.007099e+00 9.997486e-01

2. ArrayRCP_braketOperatorOverhead_UnitTest ...

Measuring the overhead of the ArrayRCP braket operator relative to raw pointers.

Number of loops = relCpuSpeed/relTestCost = 5e+03/0.0001 = 5e+07

array dim num loops raw ptr ArrayRCP ArrayRCP/raw

--------- --------- -------------- -------------- --------------

100 2307560 7.565177e-10 1.091967e-09 1.443413e+00

400 749245 7.061542e-10 1.116170e-09 1.580633e+00

1600 230574 6.943432e-10 1.171088e-09 1.686613e+00

6400 68470 6.937756e-10 1.305848e-09 1.882234e+00

3. ArrayRCP_iteratorOverhead_UnitTest ...

Measuring the overhead of the ArrayRCP iterators relative to raw pointers.

Number of loops = relCpuSpeed/relTestCost = 5e+03/0.0001 = 5e+07

array dim num loops raw ptr ArrayRCP ArrayRCP/raw

--------- --------- -------------- -------------- --------------

100 2307560 3.658930e-10 3.765406e-10 1.029100e+00

400 749245 3.789682e-10 3.671329e-10 9.687698e-01

1600 230574 3.575045e-10 3.575994e-10 1.000265e+00

6400 68470 5.485934e-10 5.484793e-10 9.997920e-01

4. ArrayRCP_selfIteratorOverhead_UnitTest ...

Measuring the overhead of the ArrayRCP as a self iterataor relative to raw pointers.

Number of loops = relCpuSpeed/relTestCost = 5e+03/0.0001 = 5e+07

array dim num loops raw ptr ArrayRCP ArrayRCP/raw

--------- --------- -------------- -------------- --------------

100 2307560 3.729480e-10 1.878863e-09 5.037869e+00

400 749245 3.919746e-10 1.754433e-09 4.475884e+00

1600 230574 3.606841e-10 1.922398e-09 5.329866e+00

6400 68470 5.474158e-10 2.262937e-09 4.133853e+00

5. ArrayView_braketOperatorOverhead_UnitTest ...

171

Measuring the overhead of the ArrayView braket operator relative to raw pointers.

Number of loops = relCpuSpeed/relTestCost = 5e+03/0.0001 = 5e+07

array dim num loops raw ptr ArrayView ArrayView/raw

--------- --------- -------------- -------------- --------------

100 2307560 7.635771e-10 1.092032e-09 1.430153e+00

400 749245 7.155570e-10 1.121049e-09 1.566680e+00

1600 230574 7.017405e-10 1.160129e-09 1.653217e+00

6400 68470 7.770807e-10 1.261093e-09 1.622860e+00

6. ArrayView_iteratorOverhead_UnitTest ...

Measuring the overhead of the ArrayView iterators relative to raw pointers.

Number of loops = relCpuSpeed/relTestCost = 5e+03/0.0001 = 5e+07

array dim num loops raw ptr ArrayView ArrayView/raw

--------- --------- -------------- -------------- --------------

100 2307560 3.629461e-10 3.765493e-10 1.037480e+00

400 749245 3.772431e-10 3.936763e-10 1.043561e+00

1600 230574 3.589737e-10 3.622779e-10 1.009205e+00

6400 68470 5.477992e-10 5.479590e-10 1.000292e+00

172

Listing 135 : Raw Array timing data on MSVC++ 2008

0. Array_braketOperatorOverhead_UnitTest ...

Measuring the overhead of the Array braket operator relative to raw pointers.

Number of loops = relCpuSpeed/relTestCost = 5e+003/0.0001 = 5e+007

array dim num loops raw ptr vector Array vector/raw Array/raw

--------- --------- -------------- -------------- -------------- -------------- --------------

100 2307560 7.757111e-010 6.110350e-010 5.243634e-010 7.877095e-001 6.759777e-001

400 749245 3.803829e-010 3.837196e-010 4.037398e-010 1.008772e+000 1.061404e+000

1600 230574 3.523814e-010 3.605133e-010 3.550921e-010 1.023077e+000 1.007692e+000

6400 68470 5.203009e-010 5.157368e-010 5.225829e-010 9.912281e-001 1.004386e+000

1. Array_iteratorOverhead_UnitTest ...

Measuring the overhead of the Array iterators relative to raw pointers.

Number of loops = relCpuSpeed/relTestCost = 5e+003/0.0001 = 5e+007

array dim num loops raw ptr vector Array vector/raw Array/raw

--------- --------- -------------- -------------- -------------- -------------- --------------

100 2307560 5.416977e-010 5.373641e-010 5.546985e-010 9.920000e-001 1.024000e+000

400 749245 3.903930e-010 3.837196e-010 3.903930e-010 9.829060e-001 1.000000e+000

1600 230574 3.550921e-010 3.794877e-010 3.659346e-010 1.068702e+000 1.030534e+000

6400 68470 5.294289e-010 5.203009e-010 5.225829e-010 9.827586e-001 9.870690e-001

2. ArrayRCP_braketOperatorOverhead_UnitTest ...

Measuring the overhead of the ArrayRCP braket operator relative to raw pointers.

Number of loops = relCpuSpeed/relTestCost = 5e+003/0.0001 = 5e+007

array dim num loops raw ptr ArrayRCP ArrayRCP/raw

--------- --------- -------------- -------------- --------------

100 2307560 5.330306e-010 8.753835e-010 1.642276e+000

400 749245 4.938305e-010 8.642033e-010 1.750000e+000

1600 230574 3.605133e-010 8.375836e-010 2.323308e+000

6400 68470 5.317110e-010 8.169636e-010 1.536481e+000

3. ArrayRCP_iteratorOverhead_UnitTest ...

Measuring the overhead of the ArrayRCP iterators relative to raw pointers.

Number of loops = relCpuSpeed/relTestCost = 5e+003/0.0001 = 5e+007

array dim num loops raw ptr ArrayRCP ArrayRCP/raw

--------- --------- -------------- -------------- --------------

100 2307560 5.460313e-010 5.460313e-010 1.000000e+000

400 749245 4.170865e-010 4.037398e-010 9.680000e-001

1600 230574 3.578027e-010 3.578027e-010 1.000000e+000

6400 68470 5.203009e-010 5.339930e-010 1.026316e+000

4. ArrayRCP_selfIteratorOverhead_UnitTest ...

Measuring the overhead of the ArrayRCP as a self iterataor relative to raw pointers.

Number of loops = relCpuSpeed/relTestCost = 5e+003/0.0001 = 5e+007

array dim num loops raw ptr ArrayRCP ArrayRCP/raw

--------- --------- -------------- -------------- --------------

100 2307560 5.460313e-010 2.452807e-009 4.492063e+000

400 749245 4.904938e-010 2.375725e-009 4.843537e+000

1600 230574 3.578027e-010 2.355534e-009 6.583333e+000

6400 68470 5.362750e-010 2.471429e-009 4.608511e+000

5. ArrayView_braketOperatorOverhead_UnitTest ...

173

Measuring the overhead of the ArrayView braket operator relative to raw pointers.

Number of loops = relCpuSpeed/relTestCost = 5e+003/0.0001 = 5e+007

array dim num loops raw ptr ArrayView ArrayView/raw

--------- --------- -------------- -------------- --------------

100 2307560 5.330306e-010 5.286970e-010 9.918699e-001

400 749245 3.803829e-010 4.004031e-010 1.052632e+000

1600 230574 3.550921e-010 3.605133e-010 1.015267e+000

6400 68470 5.111728e-010 5.180188e-010 1.013393e+000

6. ArrayView_iteratorOverhead_UnitTest ...

Measuring the overhead of the ArrayView iterators relative to raw pointers.

Number of loops = relCpuSpeed/relTestCost = 5e+003/0.0001 = 5e+007

array dim num loops raw ptr ArrayView ArrayView/raw

--------- --------- -------------- -------------- --------------

100 2307560 5.373641e-010 5.460313e-010 1.016129e+000

400 749245 3.970664e-010 3.970664e-010 1.000000e+000

1600 230574 3.550921e-010 3.523814e-010 9.923664e-001

6400 68470 5.294289e-010 5.408391e-010 1.021552e+000

174

DISTRIBUTION:

1 An Address

99 99th street NW

City, State

3 Some Address

and street

City, State

12 Another Address

On a street

City, State

U.S.A.

1 MS 1319 Rolf Riesen, 1423

1 MS 1110 Another One, 01400

1 M9999 Someone, 01234

1 MS 0899 Technical Library, 9536 (electronic)

175

176

v1.32

	Preface
	Introduction
	Fundamental problems with raw C++ pointers
	Problems using raw C++ pointers for handling single objects
	Problems using raw C++ pointers for handling arrays of objects
	Problems with the incompatibility of new/delete and try/throw/catch

	Problems with common approaches for addressing memory management in C++
	Problems with using std::vector for handling all arrays
	Problems with relying on standard memory checking utilities

	Important prerequisites
	Value types versus reference types
	Non-persisting versus persisting and semi-persisting associations

	Teuchos classes for safer memory management and usage
	Overview of basic approach employed by Teuchos memory management classes
	The proper role of raw C++ pointers
	Common aspects of all Teuchos memory management classes
	Memory management classes replacing raw pointers for single objects
	Teuchos::Ptr<T>
	Teuchos::RCP<T>
	Raw C++ references

	Memory management classes replacing raw pointers for arrays of objects
	Teuchos::ArrayView<T>
	Teuchos::ArrayRCP<T>
	Teuchos::Array<T>
	Teuchos::Tuple<T,N>
	Array views

	Const versus non-const pointers and objects
	Conversions
	Implicit and explicit raw-pointer-like conversions
	Conversions between different memory management types
	Implicit type conversion problems and shortcomings

	Core idioms for the use of the Teuchos memory management classes
	The non-member constructor function idiom
	General idioms for handling arrays of objects
	Idioms for class object data members and local variables
	Idioms for the specification of formal arguments for C++ functions
	Idioms for returning objects from C++ functions

	Reference-counting machinery in-depth
	Basic reference counting machinery
	Circular references and weak pointers
	Customized deallocators
	Embedded objects
	Extra data

	Roles and responsibilities for persisting associations: factories and clients
	Debug-mode runtime checking
	Detection of null dereferences and range checking
	Detection of circular references
	Detection of dangling references
	Detection of multiple owning RCP objects
	Performance of debug-mode checking versus memory checking tools
	Limitations of debug-mode runtime checking
	Exception handling and debugging

	Optimized performance
	Reference counting overhead
	Array access and iterator overhead
	Performance tuning strategies, semi-persisting associations

	Related idioms and design patterns
	The inverted object ownership idiom
	The separate construction and just-in-time initialization idioms
	The object self-reference idiom
	The generalized view design pattern

	Comparison with other class libraries and the standard C++ library
	Advice on refactoring existing software

	Miscellaneous topics
	Essential and accidental complexity, making implicit concepts explicit
	Philosophy of memory management: Safety, speed, flexibility and 100% guarantees

	Conclusions
	References
	Summary of Teuchos memory management classes and idioms
	Commandments for the use of the Teuchos memory management classes
	Argument for using a signed integer for size_type in the Teuchos array classes
	Raw performance data
	Raw RCP performance data
	Raw Array performance data

