

Page 1

Multi-Repository Development and

Integration with TriBITS

Roscoe A. Bartlett

Oak Ridge National Laboratories

Trilinos User Group Meeting

October 29, 2014

Page 2

Motivations and Outline

Outline:

• Overview of CASL VERA Development Efforts

• Multi-Repository Configuration and Building

• Multi-Repository Version Control and Repository Management

• Multi-Repository Integration Models and Processes

• Future TriBITS Development

Page 3

Overview of CASL VERA

Development Efforts

Page 4

Overview of CASL

• CASL: Consortium for the Advanced Simulation of Lightwater reactors

• DOE Innovation Hub including DOE labs, universities, and industry partners

• Goals:

• Advance modeling and simulation of lightwater nuclear reactors

• Produce a set of simulation tools to model lightwater nuclear reactor cores

to provide to the nuclear industry: VERA: Virtual Environment for

Reactor Applications.

• Phase 1: July 2010 – July 2015

• Phase 2: Likely to be approved?

• Organization and management:

• ORNL is the hub of the Hub

• Milestone driven (6 month plan-of-records (PoRs))

• Focus areas: Physics Integration (PHI), Thermal Hydraulic Methods

(THM), Radiation Transport Methods (RTM), Advanced Modeling

Applications (AMA), Materials Performance and Optimization (MPO),

Validation and Uncertainty Quantification (VUQ)

Page 5

VERA Development Overview

• VERA Development is complicated in almost every way

• VERA Currently Composed of:

• 18 different git repositories on casl-dev.ornl.gov (clones of other repos)

most with a different access list (NDAs, Export Control, etc.)

• 14 different TriBITS repositories providing TriBITS packages

• VERA: 144 SE Packages, 12 TPLs

• TriBITS (Tribal Build, Test, and Integrate System):

• Based on CMake/CTest/CDash

• Scalable package dependency system

• Software Development Process:

• Official definition of VERA is ‘master’ branch of git repos under gitolite

control at git@casl-dev.ornl.gov:<repo-name>.

• Primary development platform: CASL Fissile/Spy Machines

• VERA integration maintained by continuous and nightly testing:

• Pre-push CI testing: checkin-test-vera.sh, cloned VERA git repos, on

Fissile machine

• Post-push CI testing: CTest/CDash, all VERA git repos, shared libs

• Nightly CI testing: Debug and Release builds

• 100% passing builds and tests!

• VERA snapshots and releases are taken off of ‘master’ branches on casl-

dev git repos.

Page 6

VERA Meta-Project, Repositories, Packages & Subpackages

VERA

Trilinos

Epetra

…

Teuchos

Core Comm

ParameterList

…

NOX

SCALE (Exnihilo)

Nemesis

…

Insilico

Neutronics

…

Shift

PSSDriversExt

VRIPSS

utils

cobra

…

VERAInExt

VERAIn

…

• VERA: Git repository and TriBITS meta-project (contains no packages)

• Git repos and TriBITS repos: Trilinos, VERAInExt, LIMEExt, Exnihilo, …

• TriBITS packages: Teuchos, Epetra, VERAIn, Insilico, LIME, VRIPSS, …

• TriBITS subpackages: TeuchosCore, InsilicoNeutronics, …

• TriBITS SE (Software Eng.) packages: Teuchos, TeuchosCore, VERAIn, Insilico,

InsilicNeutronics, …

LIMEExt

LIME

Page 7

VERA/cmake/ExtraRepositoriesList.cmake

SET(VERA_EXTRAREPOS_DIR_REPOTYPE_REPOURL_PACKSTAT_CATEGORY

 TriBITS "" GIT git@casl-dev:TriBITS "" Continuous

 Trilinos "" GIT git@casl-dev:Trilinos "" Continuous

 Dakota Trilinos/packages/TriKota/Dakota GIT

 git@casl-dev:Dakota NOPACKAGES Continuous

 TeuchosWrappersExt "" GIT git@casl-dev:TeuchosWrappersExt "" Continuous

 COBRA-TF "" GIT git@casl-dev:COBRA-TF "" Continuous

 VERAInExt "" GIT git@casl-dev:VERAInExt "" Continuous

 DataTransferKit "" GIT git@casl-dev:DataTransferKit "" Continuous

 MOOSEExt "" GIT git@casl-dev:MOOSEExt "" Continuous

 MOOSE MOOSEExt/MOOSE GIT

 git@casl-dev:MOOSE NOPACKAGES Continuous

 SCALE "" GIT git@casl-dev:SCALE "" Continuous

 Exnihilo SCALE/Exnihilo GIT

 git@casl-dev:Exnihilo NOPACKAGES Continuous

 MPACT "" GIT git@casl-dev:MPACT "" Continuous

 LIMEExt "" GIT git@casl-dev:LIMEExt "" Continuous

 Mamba "" GIT git@casl-dev:Mamba "" Continuous

 hydrath "" GIT git@casl-dev:hydrath "" Nightly

 PSSDriversExt "" GIT git@casl-dev:PSSDriversExt "" Continuous

 VUQDemos "" GIT git@casl-dev:VUQDemos "" Nightly

)

• Official version of VERA in on master branch used for CI & Nightly testing

• Partial set of repos can be cloned (protected by different groups)

• Non-git repos are converted into git repos: Dakota, Scale, MOOSE

Page 8

Dependencies Between Selected VERA Repositories

Exnihilo

Trilinos

TeuchosWrappersExt

VERAInExt

COBRA-TF
MPACT

SCALE

PSSDriversExt

• Dependencies between repos are implicit

• Real dependencies are between packages in repos

VUQDemos

MOOSEExt

MOOSE

DatraTransferKit

Page 9

CASL VERA Repository Management: Gitolite

• Gitolite Basics:

• Special account “git” controls access to repos under /home/git/repositories

• Users register public ssh keys: public SSH key => <userid>

• Access to repos using git@casl-dev:<repo-name>

• Flexible repo access rules based on gitolite groups

• Repo git@casl-dev:gitolite-admin: SSH keys, group definitions and repo

access rules:
gitolite-admin/

keysdir/

conf/gitolite.conf

• Advantages:

• Provide repo access without providing accounts on the machine

• Define access groups right in gitolite.conf

• User can see repos and permissions using ssh git@casl-dev info

• Flexible access control by repo, by directory, etc.

• Supports custom git push hooks (e.g. use our existing git custom hooks)

• Add new repos by adding to them to gitolite.conf and pushing

• Disadvantages:

• Some initial setup

Page 10

checkin-test-vera.sh

checkin-test-vera.sh

#!/bin/bash -e

…

$VERA_BASE_DIR/VERA/checkin-test.py \

--src-dir=$VERA_BASE_DIR_ABS/VERA \

--extra-repos-file=project \

--extra-repos-type=Continuous \

--ignore-missing-extra-repos \

--default-builds=MPI_DEBUG,SERIAL_RELEASE \

-j16 \

--ctest-timeout=400 \

$EXTRA_ARGS

• Very thin bash script wrapper for TriBITS checkin-test.py

• Automatically picks up cloned repos listed in ExtraRepositoriesList.cmake

• Safe pushes requires all affected repos to be cloned and available

Page 11

Current Adoption and Usage of TriBITS in CASL

• VERA Repositories that are also independent projects using TriBITS:
• Trilinos: SNL

• SCALE: ORNL

• Requires GCC 4.6.1+ and Intel 13.1+

• Mixed Fortran, C, C++

• Linux builds

• Windows builds

• Exnihilo: ORNL
• Mostly C++ with some Fortran 90/77, Python, etc.

• Contains Denovo, Shift, Insilico

• MPACT: Univ. of Mich.
• Requires GCC 4.6.1+ and Intel 13.1+

• Mostly Fortran

• Windows builds

• COBRA-TF: Penn. State Univ.
• Mostly Fortran 77 and 90

• Native TriBITS repos providing packages: TeuchosWrappersExt, VERAInExt,

DataTransferKit, LIMEExt

• VERA Repositories/packages not using TriBITS as native build system but have

secondary native TriBITS support: MAMBA, Hydra-TH

• VERA Repositories/packages not providing secondary TriBITS build: MOOSE

• Include external CMake project as a TriBITS package: DAKOTA

Page 12

Multi-Repository

 Configuration and Building

TriBITS Structural Units

• TriBITS Project:

• Complete CMake “Project”

• Overall projects settings

• TriBITS Repository:

• Collection of Packages and TPLs

• Unit of distribution and integration

• TriBITS Package:

• Collection of related software & Tests

• Lists dependencies on SE Packages & TPLs

• Unit of testing, namespacing, documentation,

and reuse

• TriBITS Subpackage:

• Partitioning of package software & tests

• TriBITS TPLs (Third Party Libraries):

• Specification of external dependency (libs)

• Required or optional dependency

• Single definition across all packages

Packages +

Subpackages

=

Software Engineering

(SE) Packages

VC Repo not always one-to-

one with TriBITS Repo!

Page 14

Tacking on Extra Packages to a TriBITS Project

What if you want to tack on extra packages to an existing TriBITS project?

<Project>/

 CMakeLists.txt

 PackagesList.cmake

 …

 <repo0>/

 PackagesList.cmake

 …

 <repo1>/

 PackagesList.cmake

 …

$./do-configure –D<Project>_EXTRA_REPOSITORIES=<repo0>,<repo1> …

• Add-on packages from <repo0>, <repo1> automatically show up and can be

enabled.

• Every TriBITS project supports extra repositories!

ToDo: Support pre-extra repositories (packages come before project native

packages) … But will be more useful once merging of Packages and TPL

support …

Page 15

Flexibility in TriBITS Projects and Repositories

MPACT

Trilinos

SCALE

VERAInExt

COBRA-TF

MPACT

The same TriBITS repositories can be

arranged into multiple TriBITS projects

SCALE (Exnihilo)

Trilinos SCALE

VERAInExt
Exnihilo

COBRA-TF

COBRA-TF

Trilinos

Trilinos

Page 16

Dealing with Missing Repos giving Missing Packages

What if Repo2 is missing? Can we still configure and build

the remaining packages in Repo3?

Repo3/PkgE/cmake/Dependencies.cmake

 LIB_REQUIRED_PACKAGES PkgA

 LIB_OPTIONAL_PACKAGES PkgC

…

TRIBITS_ALLOW_MISSING_EXTERNAL_PACKAGES(PkgC)

Repo3/PkgF/cmake/Dependencies.cmake

 LIB_REQUIRED_PACKAGES PkgD

 LIB_OPTIONAL_PACKAGES PkgC

…

TRIBITS_ALLOW_MISSING_EXTERNAL_PACKAGES(PkgC PkgD)

Now when configuring the Project with Repo2 missing

TriBITS automatically adjusts:

WARNING: PkgC is being ignored since its directory is missing and

PkgC_ALLOW_MISSING_EXTERNAL_PACKAGE = TRUE!

…

WARNING: Setting <PROJECT>_ENABLE_PkgF=OFF because PkgD is a

required missing package!

Repo1

Repo2

Repo3

PkgA PkgB

PkgC PkgD

PkgE PkgF

Page 17

Inserting a package into Upstream Repo

What if you want to insert a package into the package’s list of an upstream TriBITS

Repo?

<projectDir>/

 PackagesList.cmake

 …

 DownstreamRepo/ # Not part of base repo!

 inserted_package/

<projectDir>/PackagesList.cmake:

TRIBITS_REPOSITORY_DEFINE_PACKAGES(

 …

 InsertedPackage DownstreamRepo/inserted_package ST

 …

)

TRIBITS_ALLOW_MISSING_EXTERNAL_PACKAGES(InsertedPackage)

• InsertedPackage can depend on upstream packages and other packages listed

in PackagesList.cmake.

• TriBITS automatically removes InsertedPackage if

DownstreamRepo/inserted_package/ does not exit and disables all downstream

dependencies.

• See ExternalPkg in TribitsExampleProject in TriBITS.

Page 18

Primary Meta-Project Packages (PMPP)

• Some packages are “primary” to the project and are under development by the

project. Other packages are just there to satisfy downstream dependencies.

Example: VERA

SET(Trilinos_NO_PRIMARY_META_PROJECT_PACKAGES TRUE)

SET(SCALE_NO_PRIMARY_META_PROJECT_PACKAGES TRUE)

SET(SCALE_NO_PRIMARY_META_PROJECT_PACKAGES_EXCEPT Insilico)

SET(LIMEExt_NO_PRIMARY_META_PROJECT_PACKAGES TRUE)

• -DVERA_ENABLE_ALL_PACKAGES=ON: Only explicitly enable the PMPPs for

VERA and not packages in Trilinos, SCALE (except Insilico), LIME, etc.

• -DVERA_ENABLE_ALL_TESTS=ON: Only enable tests for PMPPs that are

explicitly enabled and not others that might be enabled in Trilinos, SCALE, etc.

• Used in:

• Automated CTest/CDash testing (only process PMPPs)

• Pre-push CI testing with checkin-test.py (tests for only PMPPs)

• Creating source tarball distributions (excludes packages not enabled)

Page 19

Incorporating Externally Configured/Built Software

• Motivation: For some software, it may not be practical or

maintainable to create a (secondary) native TriBITS build for a

piece of software.

• Goal:

• Use another configure/build tool for external software.

• Put in CMake/TriBITS hooks to incorporate into TriBITS

build with other packages.

• Easy case: No upstream TriBITS packages => Repo1

• Medium case: No downstream TriBITS packages => Repo3

• Hard case: Both upstream and downstream TriBITS packages

=> Repo2

• Example: INL MOOSE developers not willing to support a

native TriBITS build of libmesh and MOOSE/Bison for CASL

VERA. Libmesh depends on DataTransferKit and therefore

Trilinos

Tpetra <= DataTransferKit <= libmesh <= MOOSE <=

VRIPSS

• Technical challenges in TriBITS:

• Generate export makefile for upstream Trilinos packages

• Create CMake rules to produce libs/executables

• Add dependencies for changes to upstream code

• Add dependencies for modified external project files

Repo1

Repo2

Repo3

PkgA PkgB

PkgC PkgD

PkgE PkgF

Page 20

Incorporating Externally Configured/Built Software: Example

TribitsExampleProject/packages/wrap_external/CMakeLists.txt

TRIBITS_PACKAGE(WrapExternal)

Blow away build if out of date

TRIBITS_DETERMINE_IF_CURRENT_PACKAGE_NEEDS_REBUILT(

 ${SHOW_MOST_RECENT_FILES_ARG}

 SHOW_OVERALL_MOST_RECENT_FILES

 CURRENT_PACKAGE_OUT_OF_DATE_OUT ${PACKAGE_NAME}_BULID_IS_OUT_OF_DATE

)

IF (${PACKAGE_NAME}_BULID_IS_OUT_OF_DATE))

 EXECUTE_PROCESS(COMMAND rm -rf "${PACKAGE_BINARY_DIR}/external_func/")

ENDIF()

Write the export makefile that will be used by the external project

TRIBITS_WRITE_FLEXIBLE_PACKAGE_CLIENT_EXPORT_FILES(

 PACKAGE_NAME ${PACKAGE_NAME}

 EXPORT_FILE_VAR_PREFIX TribitsExProj

 WRITE_EXPORT_MAKLEFILE "${EXPORT_MAKKEFILE}")

Run external configure

EXECUTE_PROCESS(

 COMMAND ${PYTHON_EXECUTABLE} ${EXTERNAL_FUNC_SOURCE_DIR}/configure.py

 --with-export-makefile=${EXPORT_MAKKEFILE}

 --src-dir=${EXTERNAL_FUNC_SOURCE_DIR}

 --build-dir=${EXTERNAL_FUNC_BINARY_DIR})

Define a custom build rule and target to create exteranl_func library

ADD_CUSTOM_COMMAND(

 OUTPUT ${EXTERNAL_FUNC_LIB_FILE}

 DEPENDS ${EXTERNAL_FUNC_SOURCE_DIR}/external_func.hpp

 ${EXTERNAL_FUNC_SOURCE_DIR}/external_func.cpp

 COMMAND make

 WORKING_DIRECTORY ${EXTERNAL_FUNC_BINARY_DIR})

ADD_CUSTOM_TARGET(build_external_func

 DEPENDS ${EXTERNAL_FUNC_LIB_FILE})

Automatically figure

out if reconfigure

and rebuild is

needed!

Create export file for

usage by external

software package

configure.

Run the external

software configure

Create custom

command s and

targets for building

the external

software.

Page 21

Incorporating Externally Configured/Built Software: Example

TribitsExampleProject/packages/wrap_external/CMakeLists.txt

continued …

D) Add the imported library with TRIBITS_ADD_LIBRARY(... IMPORTED ...)

Below, I just manually do what TRIBITS_ADD_LIBRARY() would do automatically.

D.1) Create an imported library target and set up the depenancies

ADD_LIBRARY(exteranl_func STATIC IMPORTED GLBOAL) # GLOBAL

SET_PROPERTY(TARGET exteranl_func PROPERTY IMPORTED_LOCATION ${EXTERNAL_FUNC_LIB_FILE})

ADD_DEPENDENCIES(build_external_func pws_c) # Upstream TriBITS libs pws_s

ADD_DEPENDENCIES(exteranl_func build_external_func)

GLOBAL_SET(exteranl_func_IMPORTLIB_TARGET build_external_func)

D.2) Update the TriBITS varaibles

APPEND_SET(${PACKAGE_NAME}_LIB_TARGETS exteranl_func)

GLOBAL_SET(${PACKAGE_NAME}_LIBRARIES exteranl_func pws_c) # Upstream TriBITS libs pws_s

GLOBAL_SET(${PACKAGE_NAME}_INCLUDE_DIRS ${EXTERNAL_FUNC_SOURCE_DIR})

GLOBAL_SET(${PACKAGE_NAME}_HAS_NATIVE_LIBRARIES ON)

INCLUDE_DIRECTORIES(${EXTERNAL_FUNC_SOURCE_DIR})

E) Add an executable and test to show that it works!

TRIBITS_ADD_EXECUTABLE_AND_TEST(run_external_func

 SOURCES run_external_func.cpp

 DEPLIBS exteranl_func

 PASS_REGULAR_EXPRESSION "external_func C B A"

)

TRIBITS_PACKAGE_POSTPROCESS()

What is missing?

• Nice wrappers in TriBITS to

support this better

• Resolve issues with generation of

export files.

TriBITS wrapper for MOOSE is MUCH worse!

Page 22

Multi-Repository

 Version Control and

Repository Management

Page 23

Managing Compatible Repos and Repo Versions

External

Repo1

External

Repo2

Project Native

Repo3

PkgA PkgB

PkgC PkgD

PkgE PkgF

Project Copy

Repo1

Project Copy

Repo2

PkgA PkgB

PkgC PkgD

Project Internal Repos

Repo2 Devs

Repo1

Integrator

Repo2

Integrator

Repo1 Devs

Project Devs

Project

Releaser

Issues that need to be addressed:

• Flexibility for development inside and outside

of particular project.

• Managing changes between different repos

versions and projects.

• Full tracking of changes and updates.

• Reproducibility of prior versions.

• Repos may be missing with optional package

dependencies.

• Making non-backward compatible changes

across many repos.

• How to manage compatible repos versions?

pull

push

pull

push

pull

and/or

push

pull

and/or

push

pull

and/or

push

pull

and/or

push

pull

and/or

push

pull

Page 24

Managing Multiple Compatible Repo Versions with git?

• Snapshot all repos into one big repo (e.g. SIERRA/Trilinos style):

• Advantages:

• One set of SHA1s, easy to do git bisect

• One repo to pull and build final version

• Disadvantages:

• Harder to coordinate changes back and forth to native repos

• Does not allow for partitioning based on access control

• Use git modules:

• Advantages:

• Built-in git support and documentation

• Individual repos stay independent (let git do its job).

• Disadvantages:

• Extra commands to pull component repos

• Updating repos versions is complex for non-git savvy developers

• Does not support co-development well at all

• Clone repos under master repo (gitdist) and track sets of compatible repos as

files and provide tools for accessing specific versions

(<Project>RepoVersion.txt files)

CASL VERA => Uses separate repos for native git repos, uses snapshotting

for non-native git repos.

Page 25

gitdist : git for collection of git repos

• gitdist: Simple stand-alone Python tool for distributing git commands across

multiple git repos. Contained in TriBITS/common_tools/git/gitdist.

Usage: gitdist [gitdist options] <raw-git-command> [git options]

• .gitdist file in base git repo:
TriBITS

Trilinos

Trilinos/packages/TriKota/Dakota

…

Example:
$ gitdist status

*** Base Git Repo: VERA

(On branch master)

*** Git Repo: Trilinos

(On branch master)

*** Git Repo: Trilinos/packages/TriKota/Dakota

…

• Common bulk commands: pull, push, local-stat, log -1

• Works well for < 10-20 repos, not for 100s of repos!

Page 26

<Project>RepoVersion.txt

• How to keep track of compatible sets of repos?

=> TriBITS support for <Project>RepoVersion.txt file:
*** Base Git Repo: SomeBaseRepo

e102e27 [Mon Sep 23 11:34:59 2013 -0400] <author1@someurl.com>

First summary message

*** Git Repo: ExtraRepo1

b894b9c [Fri Aug 30 09:55:07 2013 -0400] <author2@someurl.com>

Second summary message

*** Git Repo: ExtraRepo2

97cf1ac [Thu Dec 1 23:34:06 2011 -0500] <author3@someurl.com>

Third summary message

...

• By setting -D<PROJECT>_GENERATE_REPO_VERSION_FILE=ON, the file

<Project>RepoVersion.txt gets:

• generated in the build base directory,

• echoed in the configure output (therefore archived to CDash),

• installed in the base install directory,

• included in the source tarball (‘make package_source’),

• installed in the base install directory from the untarred source.

gitdist --dist-repo-file=<Project>RepoVersion.<somedate>.txt [other options]

Page 27

Using <Project>RepoVersion.txt for Snapshot Distributions

• Known “good” versions of the Project code are recorded as

<Project>RepoVersion.txt files (e.g. archived on CDash).

• Example: If a given Nightly build of Project passed on all platforms then we can give

the associated <Project>RepoVersion.txt file as the “version” for a client to use.

• Send client file <Project>RepoVersion.<newdate>.txt for “good” version to install.

• Client gets updated version:
 $ cd <SOME-BASE-DIR>/<PROJECT>

 $ gitdist fetch

 $ gitdist --dist-version-file=~/<PROJECT>RepoVersion.<newdate>.txt \

 checkout _VERSION_

• Client can see changes since a previous installs of <Project>:
 $ gitdist fetch

 $ gitdist \

 --dist-version-file=~/<PROJECT>RepoVersion.<newdate>.txt \

 --dist-version-file2=${INSTALL_BASE}/<olddate>/<Project>RepoVersion.txt \

 log-short --name-status _VERSION_ ^_VERSION2_

Page 28

Pre-Push CI Testing and Pushing of Multiple Repos

#!/bin/bash -e

…

$VERA_BASE_DIR/VERA/checkin-test.py \

--src-dir=$VERA_BASE_DIR_ABS/VERA \

--extra-repos-file=project \

--extra-repos-type=Continuous \

--ignore-missing-extra-repos \

--default-builds=MPI_DEBUG,SERIAL_RELEASE \

-j16 \

--ctest-timeout=400 \

$EXTRA_ARGS

• Very thin bash script wrapper for TriBITS checkin-test.py

• Automatically picks up cloned repos listed in ExtraRepositoriesList.cmake

• Safe pushes requires all affected repos to be cloned and available

Page 29

Multi-Repository

 Integration Models and

Processes

Page 30

Integrating Repos into Project: External and Internal

External

Repo1

External

Repo2

Project Native

Repo3

PkgA PkgB

PkgC PkgD

PkgE PkgF

Project Copy

Repo1

Project Copy

Repo2

PkgA PkgB

PkgC PkgD

Project Internal Repos

Repo2 Devs

Repo1

Integrator

Repo2

Integrator

Repo1 Devs

Project Devs

Project

Releaser

• Project must contain consistent

clones of all the repos in the

master branches of each!

• Processes enforce that code

pulled from the master branch

of the project’s interval repo’s is

working code!

• Core developers for Repo1 and

Repo2 may be in different

organizations/regions.

pull

push

pull

push

pull

and/or

push

pull

and/or

push

pull

and/or

push

pull

and/or

push

pull

and/or

push

pull

Page 31

Multi-Repository Integration Models

• Range of development and sync models (external dev to internal dev)

• External repo is manually synced into project/master as needed.

• External repo is synced automatically using sync server into project/master

using the checkin-test.py script.

• Both external and internal repos pushed to by different development groups

with sync servers running one way or both ways.

• Internally managed repo is synced to an external repo on some schedule to

make available to other developers and users and changes from external

repo may or may not be synced back into internal repo.

• Internally managed repo

• A given repo may shift between different integration models at different periods

of time (e.g. Trilinos, COBRA-TF)

• Integration of different repos should be done independently if possible (e.g.

errors in MPACT should not stop pushes of SCALE/Exnihilo and visa versa).

• Non-backward compatible changes to upstream repos require coordinated

development and combined pushing to project/master

Page 32

External Repo is manually synced

External

Repo2

Project Nagtive

Repo3

PkgC PkgD

PkgE PkgF

Project Copy

Repo1

Project Copy

Repo2

PkgA PkgB

PkgC PkgD

Project Internal Repos

Repo2

Integrator

A person (Repo2 Integrator) as

needed:

• Clones all repos from “Project

Copy”

• Merges in changes from “External

Repo2” (fast forward)

• Tests against all down-stream

packages and pushes with checkin-

test.py to “Project Copy Repo2”

Notes:

• No-one else pushes changes to

“Project Copy Repo2”

• Good when changes are not urgent

for Project or when “External

Repo2” is unstable

Repo2 Devs

Project Devs

pull

push

pull

push

pull

VERA Examples: DataTransferKit, MOOSE

Page 33

External repo is synced automatically using sync server

External

Repo2

Project Nagtive

Repo3

PkgC PkgD

PkgE PkgF

Project Copy

Repo1

Project Copy

Repo2

PkgA PkgB

PkgC PkgD

Project Internal Repos

Cron job

Repo2

Integrator
A cron job running a script (Repo2

Integrator) on a hourly/daily/weekly

basis:

• Clones all repos from “Project

Copy”

• Merges in changes from “External

Repo2” (fast forward)

• Tests against all down-stream

packages and pushes with checkin-

test.py to “Project Copy Repo2”

Notes:

• No-one else pushes changes to

“Project Copy Repo2”.

• Good when changes are important

or urgent to Project and “External

Repo2” is fairly stable.

Repo2 Devs

Project Devs

pull

push

pull

push

pull

VERA Examples: SCALE/Exnihilo, MPACT,

Hydra-TH

Page 34

Both external and internal repos pushed to

External

Repo2

Project Nagtive

Repo3

PkgC PkgD

PkgE PkgF

Project Copy

Repo1

Project Copy

Repo2

PkgA PkgB

PkgC PkgD

Project Internal Repos

[Cron job?]

Repo2

Integrator

to Internal

• Sync servers (or people when

manual) push changes both ways.

• Different sets of developers make

changes and push to different

Repo2 repos.

Notes:

• Good when subsets of developers

can not push to each other’s repos

• Good when changes are important

or urgent to Project.

• Good when changes made to

Internal and External repos tend to

be independent.

• Most complex and danger of merge

conflicts that someone has to

resolve!

Repo2 Devs

Project Devs

pull

push

pull

push

pull

push

[Cron job?]

Repo2

Integrator

to External

push

pull

VERA Examples: TriBITS, Trilinos, COBRA-TF (future)

Page 35

Internally managed repo is synced to an external repo

External

Repo2

Project Nagtive

Repo3

PkgC PkgD

PkgE PkgF

Project Copy

Repo1

Project Copy

Repo2

PkgA PkgB

PkgC PkgD

Project Internal Repos

[Cron job?]

Repo2

Integrator A cron job running a script (Repo2

Integrator) on a hourly/daily/weekly

basis (or a person when not run as a

cron job) :

• Clones “External Repo2”

• Merges in changes from “Project

Copy Repo2” (fast forward)

• Tests against just Repo2 tests with

checkin-test.py and push to

“External Repo2”

Notes:

• No-one else pushes changes to

“External Repo2”

• Good when you just want to make

changes available to external users

on a continuous basis.

External

Repo2 User

Project Devs

pull

push

pull

pull

push

VERA Examples: COBRA-TF (current), TeuchosWrapersExt

Page 36

Internally managed repo

Project Nagtive

Repo3

PkgE PkgF

Project Copy

Repo1

Project Copy

Repo2

PkgA PkgB

PkgC PkgD

Project Internal Repos

• Simple single-repo development

model

Notes:

• Good when you don’t need to

coordinate with developers outside

of Project

Project Devs

pull

push

VERA Examples: VERAInExt, PSSDriversExt

Page 37

Recent and Future TriBITS

Development

Page 38

Trilinos Software Engineering Technologies and Integration

Progress in Last Year:

•TriBITS Hosted on Github

• URL: https://github.com/TriBITSPub/TriBITS

• Github issues, pull requests, etc.

• Snapshotted into Trilinos (keep integrated).

• http://trac.trilinos.org/wiki/TriBITSTrilinosDev

•TriBITS Documentation: Developers guide 170+ pages, build/test reference 30+

pages, overview document in progress …

Plans for Next Year:

•TriBITS System (IDEAS Project)

• Partition TriBITS into lighter-weight framework(s), better support wrapping external

software as a TriBITS package, etc. => Broader incremental adoption.

• Merge TriBITS concepts of Packages and TPLs => Construct larger meta-projects,

build/install/test meta-projects in pieces, extract and build/install individual packages,

(optionally) build Trilinos with TPLs, use export XXXConfig.cmake files as glue.

• Standard installations of TriBITS => Build individual TriBITS packages stand-alone.

• Overview and tutorials

• Implementation of TriBITS Lifecycle Model in TriBITS system => Targeted metrics

and testing of backward compatibility, valgrind, coverage, etc.

https://github.com/TriBITSPub/TriBITS
http://trac.trilinos.org/wiki/TriBITSTrilinosDev

Page 39

Summary

• CASL VERA development has pushed multi-repo support in TriBITS

• TriBITS offers a lot of flexibility in assembling TriBITS Repositories and

Packages into different TriBITS (complete CMake) projects.

• Major remaining issues yet to be resolved in TriBITS:

• Combining concepts of packages and TPLs for large meta-projects

• Finish support for wrapping externally configured/build software as TriBITS

packagse.

• High-level and tutorial documentation

• But once these are done => TriBITS will be a good candidate for a universal

meta-build and installation system for a large amount of CSE software.

Page 40

The End

THE END

Page 41

Miscellaneous Issues and

Topics for TriBITS and

VERA

Page 42

Git Snapshot Repos and Local Project Changes

Basic Concepts:

• The external native repos does not use git (e.g. SCALE uses Mercurial)

• A git copy of the native repo is created and “snapshot” commits are created.

• Each git snapshot commit must contain info about the version of the repo from

the native repo to track versions

• Local changes can be made on a local git branch and merged with snapshot

branch.

Example: SCALE

$ git log

commit 8423c41af901082a0b05a31cbf2b15363fc09773 (master~1)

Author: Kevin Clarno <clarnokt@ornl.gov>

Date: Wed Oct 30 10:29:46 2013 -0400

 changeset: 9909:ba36380b3a92

 tag: tip

 user: Ugur Mertyurek <u2m@ornl.gov>

 date: Wed Oct 30 10:13:11 2013 -0400

 files: src/bonami/CMakeLists.txt src/bonamiM/BonamiData.cpp

 description:

 case:3312 Fixed DBC syntax error on bonamiData commented header

information in bonami cmakelist to preven possible install error

Page 43

Git Snapshot Repos and Local Changes : MOOSE and SVN

Branches in casl-dev/MOOSE.git repo:

• inl_clean_svn: Direct snaphot commits for MOOSE SVN repo

• master: Local changes and merges from inl_clean_svn

Updating snapshot:
$ cd MOOSE

$ git fetch origin

$ git checkout -b inl_clean_svn origin/inl_clean_svn # tracking branch

$./create_snapshot_commit # update from current SVN repo

$ git push # push to origin/inl_clean_svn

$ git checkout master

$ git pull

$ git merge inl_clean_svn # hope for no merge conflicts!

$ git push # push to origin/master (TEST FIRST!)

Example:
commit bacba1ed219d9fba4a50132a3173efcf3f469d18 (master~2^2~1^2)

Author: moosetest <moosetest@dd8cd9ef-2931-0410-98ca-75ad22d19dd1>

Date: Tue May 28 15:03:57 2013 +0000

r18996 | permcj | 2013-05-28 08:46:46 -0600 (Tue, 28 May 2013) | 1 line

 Holy Warnings Batman! refs-#1777

Page 44

Changing Integration Models for TriBITS and Trilinos

• Integration Models with TriBITS and Trilinos have changed in VERA

• Integration phases for Trilinos in VERA phases:

1. Push all changes to Trilinos (including TriBITS) directly to ssg/master:
1. Run VERA CI and Nightly testing directly against Trilinos on ssg/master

2. Run a sync server to test Trilinos against Denovo and push to casl-dev/master if

all tests pass, run on loops of 10 minutes between iter.

3. “ … “, adding more packages, run on loops of 3 hours

2. Push changes to TriBITS under Trilinos directly to casl-dev/master
1. Turn off sync server from from ssg/master to casl-dev/master. Manually push

changes back and forth as needed.

2. Run sync server to push TriBITS changes from casl-dev/master to ssg/master on

a daily basis.

3. Run sync server to push general Trilinos changes form ssg/master to ssg/master

on a weekly basis (but tested every day flagging regressions).

3. Pull TriBITS out of Trilinos into own repo and manage independently.
1. Push changes for TriBITS directly to casl-dev TriBITS repo

2. Push small changes to Trilinos for CASL directly to casl-dev TriBITS repo

3. Manually push changes for TriBITS from casl-dev repo to github repo

4. Manually snapshot TriBITS updates from github into Trilinos (see

http://trac.trilinos.org/wiki/TriBITSTrilinosDev)

5. Manually evaluate Trilinos on ssg and test against VERA before pushing to casl-

dev (see http://trac.trilinos.org/wiki/VERAIntegrationTriBITSTrilinos).

http://trac.trilinos.org/wiki/TriBITSTrilinosDev
http://trac.trilinos.org/wiki/VERAIntegrationTriBITSTrilinos

Page 45

VERA Development Environment Installation

• VERA Test Stands and RSICC release require a specific build environment:

 common_tools/

 autoconf-2.69/

 cmake-2.8.5/

 gitdist

 gcc-4.6.1/

 toolset/

 gcc-4.6.1/

 openmpi-1.4.3/

 tpls/

 opt/

 common/

 lapack-3.3.1/

 boost-1.49.0/

 zlib-1.2.5-patched/

 moab-4.5.0/

 hypre-2.8.0b/

 petsc-3.3-p4/

 vera_cs/

 hdf5-1.8.7/

 silo-4.8/

 qt-4.8.2/

 ...

VERAInstallationGuide.[rst,html,pdf]

describe:

• Install scripts in tribits/python download

tarballs for common_tools, GCC, and

OpenMPI and build/install from source.

• Scripts and source in casl_tpls.svn repo

configure/build/install all of the TPLs.

• Standard configurations of VERA set up

to automatically work with the Standard

VERA Dev Env.

