
Th St t f T ili S ft

2010-7789C

The State of Trilinos Software
Engineering

Recent Progress, Current Status, and
Future Issues

Roscoe A. Bartlett
http://www.cs.sandia.gov/~rabartl/p g

Department of Optimization & Uncertainty Quantification
Trilinos Software Engineering Technologies and Integration Lead

Sandia National Laboratories

Trilinos Users Group Meeting 2010 Nov 4 2010

Page 1

Trilinos Users Group Meeting 2010, Nov. 4, 2010
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,

for the United States Department of Energy under contract DE-AC04-94AL85000.

Part I
The Software Engineering Challenge in Computational

Science & Engineering

and

Th R l th t T ili C PlThe Role that Trilinos Can Play

Factors Driving Increased Complexity in CSE Software

Progress in Computational Science & Engineering (CSE) is occurring primarily
thro gh the creation of greater arieties of increasingl more comple algorithmsthrough the creation of greater varieties of increasingly more complex algorithms
and methods

o Discretization: a) geometry, b) meshing, b) approximation, c) adaptive refinement, …
o Parallelization: a) parallel support, b) load balancing, …) p pp ,) g,
o General numerics: a) automatic differentiation, …
o Solvers: a) linear-algebra, b) linear solvers, c) preconditioners, d) nonlinear solvers, e)

time integration, …
Analysis capabilities: a) embedded error estimation b) embedded sensitivities c)o Analysis capabilities: a) embedded error-estimation, b) embedded sensitivities, c)
stability analysis and bifurcation, d) embedded optimization, d) embedded UQ, …

o Input/Output …
o Visualization …
o ...

Complexity is also increasing due to new computer architectures (exascale):
o Multi-core CPUs and GPUs => More complex programming and software architecture

Decreased “mean time to failure” => More complex “robust” algorithmso Decreased mean time to failure => More complex robust algorithms
o Each technology requires specialized PhD-level expertise to implement
o Almost all technologies can be exploited to solve the full problem (i.e. design, V&V, UQ, …)
o Set of algorithms/software is too large for any single organization to create

Page 3

g g y g g

These treads will lead to greater than an order-of-magnitude increase in CSE
software complexity which will require an order-of-magnitude increase in
knowledge/skills/dedication/discipline in software design/integration/engineering!

The CSE Software Engineering Challenge

• Develop a confederation of trusted, high-quality, reusable, compatible, software
k / t i l di biliti fpackages/components including capabilities for:

o Discretization: a) geometry, b) meshing, b) approximation, c) adaptive refinement, …
o Parallelization: a) parallel support, b) load balancing, …
o General numerics: a) automatic differentiationo General numerics: a) automatic differentiation, …
o Solvers: a) linear-algebra, b) linear solvers, c) preconditioners, d) nonlinear solvers,

e) time integration, …
o Analysis capabilities: a) embedded error-estimation, b) embedded sensitivities, c)

stability analysis and bifurcation d) embedded optimization d) embedded UQstability analysis and bifurcation, d) embedded optimization, d) embedded UQ, …
o Input/Output …
o Visualization …
o ...

APP1

CSE Confederation

Pkg B ...Pkg A Pkg C

Pkg BPkg A

Pkg B ...

... Pkg Y Pkg Z

Pkg A Pkg C

Pkg X

APP2

Pkg BPkg A Pkg C

Page 4

g gg

Pkg YPkg XTrilinos itself is a smaller example of this!

Obstacles for the Reuse and Assimilation of CSE Software

Many CSE organizations and individuals are adverse to using externally y g g y
developed CSE software!

Using externally developed software can be as risk!
E t l ft b h d t l• External software can be hard to learn

• External software may not do what you need
• Upgrades of external software can be risky:

Breaks in backward compatibility?– Breaks in backward compatibility?
– Regressions in capability?

• External software may not be well supported
• External software may not be support over long term (e.g. KAI C++, CCA)External software may not be support over long term (e.g. KAI C , CCA)

What can reduce the risk of depending on external software?
• Apply strong software engineering processes and practices (high quality, low

defects, frequent releases, regulated backward compatibility, …)
• Ideally … Provide long term commitment and support (i.e. 10-30 years)
• Minimally … Develop Self-Sustaining Software (open source, clear intent,

clean design extremely well tested minimal dependencies sufficientclean design, extremely well tested, minimal dependencies, sufficient
documentation, …)

Requirements/Challenges for a Confederation of CSE Codes

• Software quality and usability Role of Trilinos?
=> Design, testing, training, standards, collaborative development

(Agile tech practices)
• Building the software in a consistent way and linking

=> Common build approach (e g CMake)

• R&D in SE
practices for CSE?

D t t d=> Common build approach (e.g. CMake)
• Reusability and interoperability of software components

=> Incremental Agile design, runtime resource management, …
• Critical new functionality development

• Demonstrate and
advocate good SE
practices in SE
community? y p

=> Closer development and integration models
• Upgrading compatible versions of software

=> Frequent fixed-time releases, regulated backward compatibility

y

• Coordinate and
interact (lead)
efforts in the CSE

• Safe upgrades of software
=> Regulated backward compatibility, reducing defects

• Documentation, tutorials, user comprehension
> SE education better documentation and examples

community?

• Collect more and
more CSE

=> SE education, better documentation and examples
• Self-sustaining software (open source, clean design, clean

implementation, well tested with unit tests and system verification
tests, minimal dependencies, barely sufficient documentation, …)

software?

=> Anyone can maintain it!
• Long term maintenance and support

= > Stable organizations, stable projects, stable staff

PART IIPART II
Recent Progress and Current Status of Trilinos

Software Engineering

Recent Progress in Trilinos SE Infrastructure

 Moved to Git version control system
 More flexible development models
 More stable code repository

 SIERRA Trilinos Almost Continuous Integration process:
 Nightly testing (< 48 hour delay) of a lot of Trilinos (Teuchos through MOOCHO) Nightly testing (< 48 hour delay) of a lot of Trilinos (Teuchos through MOOCHO)

on many platforms (GCC, Intel, AIX, Pathscale, PGI, etc.)
 SIERRA takes snapshots of Trilinos for releases

 Greater Trilinos development stability:
 Allow for daily integration testing and daily updating of customer APPs

 Support for deprecated warnings for GCC with macros
 Improvement in release processes (see Jim’s talk later):

 M f t l l d t l i t bilit f l More frequent releases => lead to less instability of releases
 External repositories and add-on Trilinos packages (see later slide)

 Partitioning of copyrighted and non-copyrighted packages
 Scalable non-direct growth (LIMEExt TerminalPackages Panzer etc) Scalable non direct growth (LIMEExt, TerminalPackages, Panzer, etc.)
 Allow users to extend Trilinos with add-on packages

 Testing improvements (see later slide):
 Introduction of CATEGORIES keyword (e.g. BASIC, NIGHTLY, etc.)

Page 8

 Better pre-push and post-push CI testing
 Faster test computers (Teuchos+ 32 min on 12 core Linux/AMD for $7K)

 More extensive/safer Teuchos memory management classes (see later slide)

External Trilinos Repositories and Add-On Packages

Example:

$ cd $TRILINOS_HOME_DIR
$ eg clone software.sandia.gov:/space/git/preCopyrightTrilinos
$ cd $BUILD_DIR
$./do-configure -DTrilinos_EXTRA_REPOSITORIES=preCopyrightTrilinos \

-DTrilinos_ENABLE_Amesos2 …

After that, all of the extra packages defined in <EXTRAREPO> will appear in
the list of official Trilinos packages and you are free to enable any that
you would like just like any other Trilinos package.

For more details see:

$TRILINOS_HOME_DIR/cmake/TrilinosCMakeQuickstart.txt
$TRILINOS_HOME_DIR/cmake/HOWTO.ADD_EXTRA_REPO

Teuchos C++ Memory Management Classes/Idioms

• The solution to eliminating
undefined behavior in C++

• Eliminate direct use of raw
• Family of collaborating classes:

RCP Ptr ArrayView ArrayRCPRCP, Ptr, ArrayView, ArrayRCP,
Array, Tuple

• Extremely good debug-mode
runtime checking and feedback.u t e c ec g a d eedbac

• Raw-pointer performance in non-
debug build.

• Circular references not
automatically handled

• Great debug-mode runtime support
for catching and diagnosing
circular references and tools tocircular references and tools to
resolve them

• Not trivial to learn classes/idioms
• Static analysis tool feedback wouldStatic analysis tool feedback would

help a lot!

www.cs.sandia.gov/~rabartl/TeuchosMemoryManagementSAND.pdf

PART IIIPART III
Immediate Needs in Trilinos Software EngineeringImmediate Needs in Trilinos Software Engineering

Immediate needs and Related Efforts in Trilinos SE

 Generalize and externalize the Trilinos CMake/CTest/CDash system
 Allow other projects to fully exploit the Trilinos SE infrastructure
 Will be used by projects like NEAMS, CASL and perhaps others

 Centralize information and keep up to date on Trilinos websites (see Jim’s talk)
 D G l it h fi t t ti !!!!!! Do Google site searches first to answer questions!!!!!!
 Example: “cmake version site:software.sandia.gov/trilinos/developer/”

 Further needed improvements in Trilinos release-related efforts and processes
 A t t d t b ll t ti Automated tarball testing
 Automated installation testing
 Move (almost) all release-related work before the branch
 See Jim’s talk See Jim s talk …

 Need more improvements to CDash server robustness
 Kitware to fix and/or new dedicated CDash server?

 Need more effort/discipline in maintaining Trilinos testing processes Need more effort/discipline in maintaining Trilinos testing processes
 Improvements in Testing (see slide)
 Sub-Package Support (see slide)
 Need more Trilinos Framework Staff!

Page 12

 Need more Trilinos Framework Staff!

Testing Improvement Needs

A Truism Related to Software Features and Testing

Murphy's Law for Software:Murphy s Law for Software:
“For any attribute you claim your software has, if you don’t have strong
automated tests to provide strong evidence for that property, you can almost
guarantee that the property will not exist just when it will do the most damage.”

Example:
Customer: “Your algorithm X does not scale very well”
Developer: “Nonsense, I tested the scalability myself just a few months ago”
Customer: “Did you test scalability on the exact release version I am using?”
Developer: “No, I did not have time to do the testing again.”
Customer: “What could have changed?”
Developer: “Some code somewhere obviously or perhaps something else?”

E l f l i b t ftExample of claims about software:
• “The software is efficient”
• “The software scales”

“The soft are is ell tested”

Page 14

• “The software is well tested”
• “The software works”

Weekly Coverage Testing

Trilinos Testing Infrastructure and Needed Improvements

Nightly Regression TestsNightly Regression Tests
Secondary Stable (SS)

CATEGORIES [BASIC NIGHTLY]
(more platforms, more TPLs)

Weekly Memory (Valgrind) Testing

ng

Asynchronous CI Tests
Secondary Stable (SS)

CATEGORIES [BASIC NIGHTLY]
(post-push CTest/Cdash, Linux/GCC)

Performance Tests
Secondary Stable (SS)

CATEGORIES PERFORMANCE
(CTest/CDash)

ct
ne

ss
 T

es
ti

Synchronous CI Tests
Primary Stable (PS)

CATEGORIES BASIC
(pre-push

Scalability Tests?
Secondary Stable (SS)

CATEGORIES SCALING???

C
or

re
c

checkin-test.py) (CTest/CDash)

Current status and needs for each testing category:
 S h CI T t B tt f h ki t t i t d f t b tt (it) t t Synchronous CI Tests: Better use of checkin-test.py script; need faster better (unit) tests
 Asynchronous CI Tests: Automatic, fast feedback (e.g. < 20 min); need better notifications
 Nightly Regression Tests: Linux/Mac, GCC/Intel; need better coverage and more platforms
 Weekly Coverage Tests: Has recurring upload failures

Page 15

y g g p
 Weekly Memory Tests: Not currently running; need a dedicated machine to run weekly
 Performance Testing: Just a few Teuchos tests (see TSDM10); need many more tests
 Scalability Tests: Not even defined, no CATEGORIES support yet, need Ctest/Cdash support

Automated Performance Testing Support in Trilinos

Always build the executable Properties of good performance testsPACKAGE_ADD_EXECUTABLE(
RCP_PerformanceTests
CATEGORIES BASIC PERFORMANCE
COMM serial mpi
SOURCES
RCP_Performance_UnitTests.cpp

Properties of good performance tests
• Hard pass/fail based on (relative) time limits
• Make timings relative to a simple related calculation

• Example: compare dot product in Tpetra
compared to simple loops with raw arrays…

)

Correctness tests that always runs (fast)
PACKAGE_ADD_TEST(
RCP_PerformanceTests
CATEGORIES BASIC PERFORMANCE

compared to simple loops with raw arrays
• Allow fine-grained adjustment of relative timings for

different machines
• Adjust the number of timing loops according to a

“relative CPU speed”
COMM serial mpi
NUM_MPI_PROCS 1
POSTFIX_AND_ARGS_0 base
--show-test-details=ALL --max-array-size=100000

STANDARD_PASS_OUTPUT
)

e a e C U speed
• Default relative CPU speed 1.0 is for a *very* slow

machine
• Only enable and run performance tests in an optimized

build on an unloaded machine
Only run performance test
PACKAGE_ADD_TEST(
RCP_PerformanceTests
CATEGORIES PERFORMANCE
COMM serial mpi
NUM MPI PROCS 1

• Always build the performance test executables and test
“correctness” of the test

• Have a simple fast “correctness” test as the default
mode to run_ _

POSTFIX_AND_ARGS_0 performance
--rel-cpu-speed=${Trilinos_REL_CPU_SPEED}
--show-test-details=ALL --max-array-size=100000
--max-rcp-create-destroy-ratio=1.05
--max-rcp-raw-adjust-ref-count-ratio=20.0
--max-rcp-sp-adjust-ref-count-ratio=1.7

bj i 1 02

Enabling performance tests
$ cmake –DTrilinos_REL_CPU_SPEED=1e+3 \

-DTrilinos TEST CATEGORY=PEFORMANCE

Page 16

--max-rcp-raw-obj-access-ratio=1.02
STANDARD_PASS_OUTPUT
)

DTrilinos_TEST_CATEGORY PEFORMANCE …

Trilinos/packages/teuchos/test/MemoryManagement/CMakeLists.txt

Automated Performance Testing Support in Trilinos

• Nightly Performance Testing: (SERIAL_PERF build currently running nightly on godel)

SET(BUILD_DIR_NAME SERIAL_PERF)
SET(Trilinos_PACKAGES Teuchos)

SET(EXTRA_CONFIGURE_OPTIONS
"-DCMAKE_CXX_FLAGS:STRING=-O3\ -DBOOST_SP_DISABLE_THREADS"
"-DCMAKE_C_FLAGS:STRING=\"-O3\""
"-DCMAKE Fortran FLAGS:STRING=\"-O5\""DCMAKE_Fortran_FLAGS:STRING=\ O5\
"-DDART_TESTING_TIMEOUT:STRING=120“
"-DTrilinos_TEST_CATEGORIES:STRING=PERFORMANCE"
"-DTrilinos_REL_CPU_SPEED:STRING=1e+3“
…
)

• ToDos:
– Add strong performance tests for a *lot* more codeAdd strong performance tests for a lot more code
– Convert existing “weak” performance tests to be “strong” performance tests
– Should there be a separate dashboard track for performance tests?
– Add an MPI_PERF build? If done carefully, this can be useful.

Page 17

Trilinos CMake Sub-Package Support

CMake Sub-Package Architecture: Motivation

Existing package dependency logic can enable many more packages than isExisting package dependency logic can enable many more packages than is
needed for sufficient testing

Example: Enable TpetraExample: Enable Tpetra

$ checkin-test.py --enable-packages=Tpetra –configure

• Enabled packages (libraries) (28/52): Teuchos, RTOp, Kokkos, Epetra, Zoltan, Shards, Triutils,
Tpetra, EpetraExt, Thyra, Isorropia, AztecOO, Galeri, Amesos, Pamgen, Ifpack, ML, Belos,
Stratimikos, Meros, Anasazi, RBGen, Sacado, Intrepid, NOX, Rythmos, MOOCHO, Sundance

• Enabled packages (tests/examples) (10/52): Tpetra, Belos, Stratimikos, Anasazi, RBGen, NOX,
Rythmos, MOOCHO, Sundance

=> Problem: Stratimikos Rythmos MOOCHO and Sundance don’t execute> Problem: Stratimikos, Rythmos, MOOCHO, and Sundance don t execute
one line of Tpetra code!

• General Problem: Current CMake build system does not respect the true

Page 19

Ge e a ob e Cu e t C a e bu d syste does ot espect t e t ue
dependency structure that exists in these packages.

Software Engineering Theory about Packaging

Package Cohesion OO Principles:
• REP (Release-Reuse Equivalency Principle): The granule of reuse is the granule of

release.
• CCP (Common Closure Principle): The classes in a package should be closed• CCP (Common Closure Principle): The classes in a package should be closed

together against the same kinds of changes. A change that affects a closed package
affects all the classes in that package and no other packages.

• CRP (Common Reuse Principle): The classes in a package are used together. If you
reuse one of the classes in a package you reuse them allreuse one of the classes in a package, you reuse them all.

Package Coupling OO Principles:
• ADP (Acyclic Dependencies Principle): Allow no cycles in the package dependencyADP (Acyclic Dependencies Principle): Allow no cycles in the package dependency

graph.
• SDP (Stable Dependencies Principle): Depend in the direction of stability.
• SAP (Stable Abstractions Principle): A package should be as abstract as it is stable.

Problem: Many Trilinos packages violate the SE packaging principles most importantly
the CRP

Page 20

Source: Martin, Robert C. Agile Software Development (Principles, Patterns, and
Practices). Prentice Hall, 2003

CMake Sub-Package Architecture: The Idea

A

A1 A2
C

B
C1 C2

• Trilinos packages: More natural feature/social/user/documentation collections
• Trilinos sub-packages: Dependency-management SE packages (hidden from user)
• Speeds up pre-push rebuilds and testing with checkin-test.py tool
• Provided greater control over feature selection
• Helps to minimize superficial entangling dependencies
• Minimizes the number of top-level packagesMinimizes the number of top level packages
• Hides complexity form the user
• However, some SE packages will still be needed due to dependency issues
• Git allows us to move files around into different directories so we can now do this!

Page 21

• See Trilinos Framework Backlog Item 4644

PART IVPART IV
Longer Term Issues in Trilinos Software EngineeringLonger Term Issues in Trilinos Software Engineering

Regulated Backward Compatibility

Example of the Need for Backward Compatibility

SIERRA Y+1
(released against

Trilinos SIERRA Y+1)

Xyce J+1
(released against

VTK M+1
(l d i t(released against

Trilinos X)
(released against

Trilinos X+1)

Trilinos
SIERRA

Y+1?

Multiple releases of Trilinos presents a possible problem with complex applications

Solution:

Page 24

=> Provide sufficient backward compatibility of Trilinos X through Trilinos SIERRA Y+1

Backward Compatibility Considerations

• Backward compatibility is critical for:
• Safe upgrades of new releases
• Composability and compatibility of different software collections

• Maintaining backward compatibility for all time has downsides:
• Testing/proving backward compatibility is expensive and costly
• Encourages not changing (refactoring) existing interfaces etc.

• => Leads to software “entropy” which kills a software product

• A compromise: Regulated backward compatibility (Trilinos approach)
• Maintain a window of “sufficient” backward compatibility over major

version numbers (e.g. 1-2 years)
• Provide “Deprecated” compiler warnings• Provide Deprecated compiler warnings

• Example: GCC’s __deprecated__ attribute enabled with
–DTrilinos_SHOW_DEPRCATED_WARNINGS:BOOL=ON

• Drop backward compatibility between major version numbers

Page 25

• Drop backward compatibility between major version numbers
• [Future] Provide strong automated testing of Trilinos backward

compatibility

Regulated Backward Compatibility in Trilinos

• Trilinos Version Numbering X.Y.Z:
• X: Defines backward compatibility set of releases
• Y: Major release (off the master branch) number in backward compatible set
• Z: Minor releases off the release branch X.Y
• Y and Z: Even numbers = release, odd numbers = dev

• Makes logic with Trilinos_version.h easier
• Backward comparability between releases:

• Example: Trilinos10.6 is backward compatible with 10.0 through 10.4
• Example: Trilinos 11.X is not compatible with Trilinos 10.Y

Maintain backward compatibility of 11.0 with only 10.3 but
drop all other deprecated code!drop all other deprecated code!

11.5 (Dev)

10.0 11.0

10.2 10.4 10.6 11.2 11.4

Test backward compatibility of Dev with
t l i ht!

Page 26

(Sept 2009) (Sept 2011) current release every night!

Example: Major Trilinos versions change every 2 years with 2 releases per year

Collaborative Development (e.g. Code Reviews)

and

Static Analysis Tools

Collaborative Development (e.g. Code Reviews)

• Importance of Collaborative Development Practices (“Code Complete 2nd”)
• Testing alone will only achieve the detection of 60% or less of defects (Jones 2000)
• High-volume beta testing (> 1000 sites) achieves less than 85% defect detection.
• Formal code reviews alone achieve 60% defect detection rates
• Formal code reviews combined with testing can achieve 95% or higher defect• Formal code reviews combined with testing can achieve 95% or higher defect

detection/removal (Jones 200)
• Per defect, reviews are 20 times cheaper than black-box testing (Freedman and

Weinberg 1990).
• You can’t afford not to implement some type of code review process!

• Approaches to doing effective collaborative development (“Code Complete 2nd”)
• Formal code reviews

Inform re ie s (e g code reading alk thro ghs dog and pon sho s)• Inform reviews (e.g. code reading, walk-throughs, dog-and-pony shows, …)
• Pair programming

• From “Implementing Lean Software Development”:
• Issues that are well addressed by code reviews:• Issues that are well addressed by code reviews:

• Readability, comprehensibility, change tolerance, duplicate code, design quality
(good naming, good use of OO patterns and principles, etc.)

=> catching requirements defects and design defects

Page 28

• Issues not well addressed by code reviews:
• Catching low-level construction defects => Use TDD and unit testing instead
• Enforcing low-level coding standards => Use static analysis tools instead

Integrated Static Analysis Tools in Development Envir

• Leaning and improving quality through automated tools and continuous feedback?
• Example: Writing better C++ using g++ -Wall -pedantic -ansi …
• We don’t expect everyone to be experts in C++ to write C++ code because

modern C++ compilers provide lots of feedback and help in learning C++.
• Tools/analyses/feedback not integrated into development environment are ignored!

• Example: What is the coverage of your Trilinos package today?
• Use integrated analysis to provide real-time feedback:

• Goals of static analysis tools: Teach, enforce standards & consistency, …
• Examples of standards that can checked for automatically:

• “C++ Coding Standard”: Sutter and Alexandrescu
• “Thyra Coding and Documentation Guidelines”

• http://www.cs.sandia.gov/~rabartl/ThyraCodingGuideLines.pdf
• Examples of tools that can be integrated into development environment:

• Separate source analysis tools: AStyle, Google cpplint.py
• Integrated with GCC compiler:

• Mozilla Dehydra: https://developer.mozilla.org/en/Dehydra

Page 29

• GCC 4.5.x+ plug-in that executes user-defined checks as part of
compilation!

Official Trilinos Developers Toolset

Official Trilinos Developers Toolset: Idea and Motivation

• Idea: Define a suite of standard build and other tools along with simple global• Idea: Define a suite of standard build and other tools along with simple global
install script

• Candidate list of software:
• GCC 4.X.Y (Fortran or no Fortran?)GCC (o a o o o a)
• Open MPI ???
• CMake 2.8.X
• Git/eg ???
• CLAPACK ???
• Boost ???
• Doxygen ???
• Graphviz/Dot ???• Graphviz/Dot ???

• Motivation:
• Reduce variability in development/testing for different developers• Reduce variability in development/testing for different developers
• Turn on strong warnings and warnings as errors!

• Improve portability of the code
• Simplify setup of new Trilinos development and test machines

Page 31

y
• Allow more code to be elevated to Primary Stable Code (e.g. boost)

Official Trilinos Developers Toolset: Install scripts

Provide global install script:Provide global install script:

$ Install-trilinos-toolset.py –do-all –install-dir=/home/trilinos/install

• Checks out tarballs from Trilinos3PL CVS repository
• Installs all software in single bin, lib, and include directories
• Uses separate install scripts like install-cmake,py, install-git.py etc.
• Would only support basic Linux (perhaps Unix) and Mac computers (not Windows)

ToDo:
• Decide what software should be included
• Decide on versions of all the software packages
• Refactor existing install-git.py and install-cmake.py to enable faster development of

simple install stepssimple install steps
• Get software and write basic install scripts and global install script
• Beta users to work out bugs
• Deploy across all Trilinos developers

Page 32

• Turn on warnings as errors!
• Enjoy a more stable development environment!

Partitioning of Trilinos Git Repository for Sustained
Growth?

Partitioning the “Trilinos” Git Repository?

TrilinosCore TrilinosLinear
Teuchos, Kokkos, RTOp,
ThreadPool, Epetra, EpetraExt,
Tpetra, Thyra?, Sacado, TriUtils,
Optika, …

Ifpack, Ifpack2, ML, MueLu,
Amesos, Belos, Anasazi, Teko,
Komplex, AztecOO, Galeri,
Thyra?, Stratimikos, RBGen,
Pli i

TrilinosDiscretization TrilinosNonlinear
Zoltan, Shards, Intrepid,

Pliris, …

GlobiPack, NOX, LOCA,
Rythmos, MOOCHO, Aristos,
TriKota, Stokhos, …

, , p ,
Isorropria, FEI, Mesquite,
Phalanx, Mortel, STK, Trios,
Pamgen, ITAPS, …

TrilinosSkins
TrilinosTerminal

CTrilinos, ForTrilinos, PyTrilinos,
WebTrilinos

TrilinosCouplings, Piro, Didasko,

• Needed for future scalable growth of Trilinos?
• Provides better separation of the Trilinos development community?

WebTrilinos, …Sundance, …

p p y
• Use git clones to mange currently compatible collections of software?
• Keep integrated with nested Almost Continuous Integration processes?
• Need better unit and package-level tests?Page 34

Miscellaneous Areas of Needed Improvement and Progress

• Run your own code coverage testing (see TrilinosCMakeQuickstart.txt)Run your own code coverage testing (see TrilinosCMakeQuickstart.txt)
$./do-configure -DTrilinos_ENABLE_COVERAGE_TESTING:BOOL=ON
$ make dashboard

• Run your own memory checking testing (see TrilinosCMakeQuickstart.txt)
$ env CTEST_DO_MEMORY_TESTING=TRUE make dashboard
• Need a trimmer test suite to allow valgrind to run locally

• Need better namespace safety
• Don’t pollute the global namespace, no ‘using namespace ANTHYING’
• See Trilinos policy on this!

• Need strong warnings and warnings as errors
• Need a standard version of GCC and MPI first (Official Trilinos Toolset)

• Need to test Doxygen documentation
• Use some automated HTML testing tools?

• Improving exception safety (basic guarantee, strong guarantee, and no-fail
guarantee and memory leaks)

• Critical for reliable behavior for users

Page 35

• Critical for coupling Trilinos code together
• Need more Trilinos Framework staff and scientific programmers to address

some of this!

Revised Trilinos Life-Cycle Model?

Self-Sustaining Software

Definition of Self-Sustaining Software:

• Open source

• High-level document (perhaps just written in Doxygen) describing purpose

• Clean design, clean implementation

• Extremely well tested with unit tests and system verification tests

• Minimal dependencies (all of which are also Self-Sustaining Software)

• (Barely) sufficient documentation

• All maintenance of the software maintains the above properties.

Lean/Agile development methods can create Self-Sustaining Software!

Page 37

Goals for an updated Trilinos Life-cycle Model

• Allow pure research and applied research with a realistic path to
productionization

• Provide smooth low-effort transitions from research to production in phases

• Provide maximum confidence with low cost (for research results and then
for real users)for real users)

• Allow the use of Lean/Agile practices and processes along the way• Allow the use of Lean/Agile practices and processes along the way

Page 38

Proposed Phases for new Trilinos Life-cycle Model

1) Purely Experimental Code

2) Research Stable Code

3) Production Growth Stable Code

4) Production Maintenance Stable Code

See Trilinos Framework Backlog Item 4837

Page 39

Proposed Trilinos Life-cycle Model: Research Phases

1) Purely Experimental Code:
• Not developed in a Lean/Agile consistent way
• Could actually be declared to be Secondary Stable code with respect to CI and nightly

Trilinos testing but in general would be considered to be Experimental code in Trilinos
• Does not provide sufficient unit (or otherwise) testing to prove correctnessDoes not provide sufficient unit (or otherwise) testing to prove correctness
• Should not be used anything important (not even for research results but in the current

CS&E publication environment would be allowed)
• Should not go out in general releases of Trilinos

D t id di t f d ti f ti d ti lit d• Does not provide a direct foundation for creating production-quality code

2) Research Stable Code:
• Developed in a Lean/Agile consistent wayDeveloped in a Lean/Agile consistent way
• Strong unit and verification testing (i.e. proof of correctness) written while the

code/algorithms are being developed
• Could be Primary Stable or Secondary Stable code in Trilinos

D t ll h d l d t ti t• Does not generally have good examples, documentation, etc.
• Appropriate to be used by “friendly expert users”
• Appropriate to be part of a general release of Trilinos
• Appropriate to be used in customer codes (with lots of “hand holding”)

Page 40

pp op ate to be used custo e codes (t ots o a d o d g)
• Would tend to provide for regulated backward compatibility but not in all cases
• Provides the foundation for creating production-quality code

Proposed Trilinos Life-cycle Model: Production Phases

3) Production Growth Stable Code:
• Includes all the good qualities of "Research Stable Code" plus ...
• Improving validation of user input errors and better error reporting

I i f l d t ti (D t h i l t t)• Improving formal documentation (Doxygen, technical reports, etc.)
• Improving examples, tutorial material, etc.
• Optional refactoring of the code structure and user interfaces to make more consistent,

easier to maintain (should not be needed if software was developed in Agile way)(p g y)
• Maintain rigorous regulated backward compatibility with few (if any) truly incompatible

changes with new releases
• Expanding usage in customer codes
• Appropriate to turn over to a maintenance support team at any time• Appropriate to turn over to a maintenance support team at any time

4) Production Maintenance Stable Code:
• Includes all the good qualities of "Production Growth Stable Code" plus ...Includes all the good qualities of Production Growth Stable Code plus ...
• Primary development only includes bug fixes and performance tweaks
• Maintains rigorous backward compatibility with typically no deprecated features
• Could be maintained by parts of the user community if necessary

Page 41

THE END

