'
| ; .' 2010-7704C

Trilinos Software Engineering
Technologies and Integration Capability
Area Overview

Roscoe A. Bartlett
http://www.cs.sandia.gov/~rabartl/
Department of Optimization & Uncertainty Estimation
Trilinos Software Engineering Technologies and Integration Lead

Sandia National Laboratories

Trilinos User Group Meeting, November 2, 2010

National
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, Lahovatosi

Page 1 for the United States Department of Energy under contract DE-AC04-94AL85000.

-
}-" rilinos Software Engineering Technologies and Integration

* Numerical Algorithm Interoperability and Vertical Integration
— Abstract Numerical Algorithms (ANAS)
— Thyra (Interoperability and vertical integration of ANAS)

» General Software Interoperability and Integration
— Memory management (Teuchos::RCP, ...)
— User input and configuration control (Teuchos::ParameterList, ...)
— User introspection (Teuchos::FancyOStream, ...)

» Skin packages (wrappers for other languages)
— PyTrilinos, ForTrilinos, CTrilinos

» General Software Quality and Design
— Separation of “Stable” vs. “Experimental” code
— Day-to-day stability of “Stable” code

* Lean/Agile Software Engineering Principles and Practices
— Internal Trilinos issues

— External customer issues Sani

Lahoratories

Page 2

}- Recent Trilinos Improvements of General Interest

O External repositories and add-on Trilinos packages

O Allows users to add their own packages independently and use the
Trilinos CMake/CTest/CDash system

O [Future] Generalize and externalize the Trilinos CMake/CTest/CDash system
O Allow other projects to fully exploit the Trilinos SE infrastructure
O Will be used by projects like NEAMS, CASL and perhaps others
O Regulated backward compatibility and Trilinos versioning
O Deprecated warnings allow users to slowly refactor code
O [Future] automated testing of backward compatibility
O Teuchos memory management classes:
O Eliminate undefined behavior in C++ codes (single objects and arrays of
objects).
0 www.cs.sandia.gov/~rabartl/TeuchosMemoryManagementSAND.pdf
0 SIERRA Trilinos Almost Continuous Integration process:

O Nightly testing (< 48 hour delay) of a lot of Trilinos (Teuchos through
MOOCHO) on many platforms (GCC, Intel, AlX, Pathscale, PGlI, etc.)

0 SIERRA takes snapshots of Trilinos for releases
O Greater Trilinos development stability:
O Allow for daily integration testing and daily updating of customer APPs

— '
¥’. External Trilinos Repositories and Add-On Packages

Example:

$ cd $TRILINOS HOME DIR

$ eg clone software.sandia.gov:/space/git/preCopyrightTrilinos

$ cd $BUILD DIR

$./do-configure -DTrilinos_EXTRA REPOSITORIES=preCopyrightTrilinos \
-DTrilinos_ENABLE_Amesos2 ..

After that, all of the extra packages defined in <EXTRAREPO> will appear in
the list of official Trilinos packages and you are free to enable any that
you would like just like any other Trilinos package.

For more details see:

$TRILINOS HOME_DIR/cmake/TrilinosCMakeQuickstart.txt
$TRILINOS HOME_DIR/cmake/HOWTO.ADD _EXTRA REPO

=

- '
}’. Backward Compatibility Considerations

» Backward compatibility is critical for:
« Safe upgrades of new releases
« Composability and compatibility of different software collections

« Maintaining backward compatibility for all time has downsides:
» Testing/proving backward compatibility is expensive and costly
* Encourages not changing (refactoring) existing interfaces etc.
» => | eads to software “entropy” which kills a software product

* A compromise: Regulated backward compatibility (Trilinos approach)

« Maintain a window of “sufficient” backward compatibility over major
version numbers (e.g. 1-2 years)

* Provide “Deprecated” compiler warnings
« Example: GCC’s _ deprecated attribute enabled with
—DTrilinos SHOW_DEPRCATED_ WARNINGS:BOOL=ON
» Drop backward compatibility between major version numbers

 [Future] Provide strong automated testing of Trilinos backwar Sancia
compatibility National
Laboratories

Page 5

- '
},. Regulated Backward Compatibility in Trilinos

 Trilinos Version Numbering X.Y.Z:
» X: Defines backward compatibility set of releases
* Y. Major release (off the master branch) number in backward compatible set
« Z: Minor releases off the release branch X.Y
« Y and Z: Even numbers = release, odd numbers = dev
» Makes logic with Trilinos_version.h easier
» Backward comparability between releases
« Example: Trilinos10.6 is backward compatible with 10.0 through 10.4
« Example: Trilinos 11.X is not compatible with Trilinos 10.Y

Maintain backward compatibility of 11.0 with only 10.3 but
drop all other deprecated code!

/\ L S
C IS S AR

10.2 10.4 10.6 11.2 11.4 11.5 (Dev)
10.0 11.0 Test backward compatibility of Dev with
(Sept 2009) (Sept 2011) current release every night!

Example: Major Trilinos versions change every 2 years with 2 releases per year

— '
i’. Trilinos Software Engineering Capabilities Area Webpage

http://trilinos.sandia.qov/capability areas.html

Page 7

Sandia
Laboratories

