
2010-7704C

Trilinos Software Engineering
Technologies and Integration CapabilityTechnologies and Integration Capability

Area Overview

Roscoe A. Bartlett
http://www.cs.sandia.gov/~rabartl/p g

Department of Optimization & Uncertainty Estimation
Trilinos Software Engineering Technologies and Integration Lead

Sandia National Laboratories

Trilinos User Group Meeting November 2 2010

Page 1

Trilinos User Group Meeting, November 2, 2010
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,

for the United States Department of Energy under contract DE-AC04-94AL85000.

Trilinos Software Engineering Technologies and Integration

• Numerical Algorithm Interoperability and Vertical Integration• Numerical Algorithm Interoperability and Vertical Integration
– Abstract Numerical Algorithms (ANAs)
– Thyra (Interoperability and vertical integration of ANAs)

• General Software Interoperability and Integration
– Memory management (Teuchos::RCP, ...)
– User input and configuration control (Teuchos::ParameterList, ...)
– User introspection (Teuchos::FancyOStream, ...)

• Skin packages (wrappers for other languages)
– PyTrilinos ForTrilinos CTrilinos– PyTrilinos, ForTrilinos, CTrilinos

• General Software Quality and Design
– Separation of “Stable” vs. “Experimental” code
– Day-to-day stability of “Stable” code

• Lean/Agile Software Engineering Principles and Practices
I t l T ili i

Page 2

– Internal Trilinos issues
– External customer issues

Recent Trilinos Improvements of General Interest

 External repositories and add-on Trilinos packages
 Allows users to add their own packages independently and use the

Trilinos CMake/CTest/CDash system
 [Future] Generalize and externalize the Trilinos CMake/CTest/CDash system

 All th j t t f ll l it th T ili SE i f t t Allow other projects to fully exploit the Trilinos SE infrastructure
 Will be used by projects like NEAMS, CASL and perhaps others

 Regulated backward compatibility and Trilinos versioning
 D t d i ll t l l f t d Deprecated warnings allow users to slowly refactor code
 [Future] automated testing of backward compatibility

 Teuchos memory management classes:
 Eliminate undefined behavior in C++ codes (single objects and arrays of Eliminate undefined behavior in C++ codes (single objects and arrays of

objects).
 www.cs.sandia.gov/~rabartl/TeuchosMemoryManagementSAND.pdf

 SIERRA Trilinos Almost Continuous Integration process: SIERRA Trilinos Almost Continuous Integration process:
 Nightly testing (< 48 hour delay) of a lot of Trilinos (Teuchos through

MOOCHO) on many platforms (GCC, Intel, AIX, Pathscale, PGI, etc.)
 SIERRA takes snapshots of Trilinos for releases

Page 3

 Greater Trilinos development stability:
 Allow for daily integration testing and daily updating of customer APPs

External Trilinos Repositories and Add-On Packages

Example:

$ cd $TRILINOS_HOME_DIR
$ eg clone software.sandia.gov:/space/git/preCopyrightTrilinos
$ cd $BUILD_DIR
$./do-configure -DTrilinos_EXTRA_REPOSITORIES=preCopyrightTrilinos \

-DTrilinos_ENABLE_Amesos2 …

After that, all of the extra packages defined in <EXTRAREPO> will appear in
the list of official Trilinos packages and you are free to enable any that
you would like just like any other Trilinos package.

For more details see:

$TRILINOS_HOME_DIR/cmake/TrilinosCMakeQuickstart.txt
$TRILINOS_HOME_DIR/cmake/HOWTO.ADD_EXTRA_REPO

Backward Compatibility Considerations

• Backward compatibility is critical for:
• Safe upgrades of new releases
• Composability and compatibility of different software collections

• Maintaining backward compatibility for all time has downsides:
• Testing/proving backward compatibility is expensive and costly
• Encourages not changing (refactoring) existing interfaces etc.

• => Leads to software “entropy” which kills a software product

• A compromise: Regulated backward compatibility (Trilinos approach)
• Maintain a window of “sufficient” backward compatibility over major

version numbers (e.g. 1-2 years)
• Provide “Deprecated” compiler warnings• Provide Deprecated compiler warnings

• Example: GCC’s __deprecated__ attribute enabled with
–DTrilinos_SHOW_DEPRCATED_WARNINGS:BOOL=ON

• Drop backward compatibility between major version numbers

Page 5

• Drop backward compatibility between major version numbers
• [Future] Provide strong automated testing of Trilinos backward

compatibility

Regulated Backward Compatibility in Trilinos

• Trilinos Version Numbering X.Y.Z:
• X: Defines backward compatibility set of releases
• Y: Major release (off the master branch) number in backward compatible set
• Z: Minor releases off the release branch X.Y
• Y and Z: Even numbers = release, odd numbers = dev

• Makes logic with Trilinos_version.h easier
• Backward comparability between releases

• Example: Trilinos10.6 is backward compatible with 10.0 through 10.4
• Example: Trilinos 11.X is not compatible with Trilinos 10.Y

Maintain backward compatibility of 11.0 with only 10.3 but
drop all other deprecated code!drop all other deprecated code!

11.5 (Dev)

10.0 11.0

10.2 10.4 10.6 11.2 11.4

Test backward compatibility of Dev with
t l i ht!

Page 6

(Sept 2009) (Sept 2011) current release every night!

Example: Major Trilinos versions change every 2 years with 2 releases per year

Trilinos Software Engineering Capabilities Area Webpage

http://trilinos.sandia.gov/capability areas.htmlhttp://trilinos.sandia.gov/capability_areas.html

Page 7

