
Page 1

Trilinos Software Engineering Status

and Future Issues

Roscoe A. Bartlett

http://www.cs.sandia.gov/~rabartl/

Department of Optimization & Uncertainty Estimation

Trilinos Software Engineering Technologies and Integration Lead

Sandia National Laboratories

Trilinos User Group Meeting, November 5, 2009

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,

for the United States Department of Energy under contract DE-AC04-94AL85000.

2009-7704P

Page 2

Trilinos Software Engineering Overview: Current Status

• Separation of “Stable” Code vs. “Experimental” Code

• “Primary Stable” code vs. “Secondary Stable” Code

• “Experimental “code

• Maintaining stability of “Stable” development code and tests

• “Primary Stable” Code: pre-checkin testing (on “primary platform”)

• “Secondary Stable” Code: nightly tested

• Maintaining portability

• Nightly testing on a variety of “secondary platforms”

• Testing infrastructure

• CTest: Local and pre-checkin testing, drives CI and nightly testing

• CDash: Displays test results

• Automated testing:

• Trilinos framework nightly testing (Linux, Mac, Windows) => CDash

• APP Trilinos Integration testing (Xyce, Charon, Alegra, SIERRA)

• Customer application Integration:

• Daily integration testing with upgrades to Trilinos releases: Charon,

Xyce, Alegra

• Almost Continuous Integration: SIERRA

Page 3

Trilinos “Stable” vs “Experimental” Code: Defined

• “Stable” Code and Tests:

– “Meets one or more of the following criteria:

• Represents an important capability being used by an existing, or

• Represents a new capability that the authors are willing to stand behind

• Does not mean it is being targeted for the next release

– Expected to be kept working at all times on the primary development platform

– Developed and maintained to be highly portable

– Maintained at the high quality as defined by modern SE principles

• “Experimental” Code and Tests:

– By definition, all remaining code that is not “Stable” code.

– Represents fundamental research and may be developed with informal low-

quality software practices.

– Any code that has a direct and mandatory dependency on any “Experimental”

code must also be considered to be “Experimental” code.

– Developers should try to avoid depending on other “Experimental” code because

it is likely to be unstable and break frequently.

– “Experimental” code should be protected behind ifdefs with macros that must be

defined in order to be built.

Page 4

Trilinos “Primary Stable” vs “Secondary Stable” Code

• Sub-categorizations of “stable” code:

– “Primary Stable” code is “Stable” code that only depends on:

• C, and C++ compilers

• Fortran 77 compiler (optional)

• BLAS and LAPACK

• MPI

– “Secondary Stable” code

• Has additional dependencies such as:

– SWIG/Python (i.e. PyTrilinos)

– Fortran 2003+ (i.e. ForTrilinos)

– External direct sparse solvers like UMFPACK, SuperLU, etc. (i.e. Amesos

adapters)

• Or, could be considered “Primary Stable” Code but is excluded from pre-checkin testing

– Didasko

– NewPackage

– ...

• “Stable” code in one package can only depend on “Stable” code in other

packages.

• “Stable” code should by default only build “Primary Stable” code.

• Enabling “Secondary Stable” code should require extra configure-time

options.

Page 5

Stable (Primary and Secondary) and Experimental Code

• Primary Stable Code and Tests:

– All affected code should be built and tested *before* a checkin

– CATEGORY in cmake/Trilinos[Packages,TPLs].cmake set to “PS”

– Required TPL dependencies on BLAS, LAPACK, and MPI (or less)

– Configured with:

-D Trilinos_ENABLE_ALL_PACKAGES:BOOL=ON \

-D Trilinos_ENABLE_TESTS:BOOL=ON

• Secondary Stable Code and Tests:

– Represents an important (released) capability but has extra TPL dependencies

– *Note* be enabled for pre-checkin testing

– Tested by central framework resources (nightly integration testing)

– CATEGORY in cmake/Trilinos[Packages,TPLs].cmake set to “SS”

– Requires explicitly enabling “Stable” optional TPL dependencies

– Configured with:

-D Trilinos_ENABLE_ALL_PACKAGES:BOOL=ON \

-D Trilinos_ENABLE_SECONDARY_STABLE_CODE=ON \

-D Trilinos_ENABLE_TESTS:BOOL=ON

• Tertiary Stable Code and Tests? (Right now just TPLs)

• Experimental Code:

– CATEGORY in cmake/Trilinos[Packages,TPLs].cmake set to “EX”

– Requires explicit enabling

– Tested by individual package teams (but posts results to main CDash dashboard)

Page 6

Trilinos Software Engineering: Issues

• Partitioning of the test suite and testing efforts

• Improving stability of “Stable” code => checkin-test.py script

• CMake sub-package architecture

• Official Trilinos developers toolset

• Automated Installation testing

• Regulated backward comparability

• Streamlined and robustify release process

• Other areas of needed improvement and progress

Page 7

Partitioning of the Trilinos Test Suite

• “Unit” tests (i.e. TDD tests)

• Make Trilinos packages better independently tested

• Goal: Minimize need to enable and test down-stream packages

• “Basic integration” tests (i.e. pre-checkin tests)

• “Unit tests” + some basic integration tests with all optional packages

• Required on pre-checkin testing of Primary Stable Code

• Protects basic functionality and other developers

• “Regression” tests (i.e. basic “nightly” tests)

• “Basic integration” tests + some heavier tests

• Runs on all available nightly platforms

• Protects key correctness functionality

• “Performance” tests (See Teuchos performance tests)

• Specifically designed to protect serial performance

• Strong tests with hard time limits (adapted to specific platforms)

• Runs on specific platforms without any other machine loads

• “Scalability” tests

• Specifically designed to protect parallel scalability performance

• Utilize targeted timers around problematic computations

• “User-like” tests (i.e. installation and backward compatibility tests)

• Subset of “Basic Integration” tests

Need to add a CATEGORIES

argument to the

PACKAGE_ADD_TEST(…)

function and an input cache

variable

Trilinos_TEST_CATEGORIES

Page 8

Improving Stability of “Stable” code: Motivation

• Support deep stacks of vertically integrated Trilinos packages with

production APPs

• Support tighter coupling and co-development with production APPs

– SIERRA toolkit packages (STK_Mesh, STK_IO, ...)

– Replace SIERRA framework code with Trilinos code (Teuchos::ParameterList, ...)

– Many many others …

• Support more frequent, safer, higher quality, lower risk releases of Trilinos

• Improve overall development productivity and software quality

See:

Trilinos/doc/DevGuide/TrilinosSoftwareEngineeringImprovements/*.tex

Page 9

“Stable” Code: 100% Passing Test Policy

• All “Stable” code should have 100% passing tests 100% of the time on the primary

development platforms as the norm instead of the exception.

• Achieving 100% passing tests on auxiliary development platforms is also a priority but is

done in a secondary development loop.

• A failing test on any testing platform should be addressed and be made to pass or be

disabled using the following algorithm:

– Fix the test in the strongest way possible

– Or, loosen the “strength” of test to get it pass on that specific platform (i.e. by loosing a platform-

specific tolerance)

– Or, disable the test and submit a new item to the sprint or product backlog (e.g. Bugzilla bug

report) so that it can be prioritized and fixed later

– Or, remove the test and all of the associated code related to it

Page 10

Motivations for a 100% Passing Test Policy for “Stable” Code

Why is 100% passing tests important?

• Package Y (reference package):

– “Broken Window” Phenomenon

=> One broken test begets others

– Zero (0) is singularly different that 1 or X failing tests

=> People take notice of “all passed” vs “failed”

– „M‟ failing tests is not much different that „N‟ failing tests

– 100% passing tests is a clear measure of the code health

– 100% passing test suite is unbiased criteria for code checkins

– 100% passing test suite is an unbiased measure for if any code has

been broken after a checkin

– Code coverage less meaningful when there are failing tests

• Package X (up-stream package being used by Package Y)

– 100% passing test suite for Package Z provides a clear means to

determine if changes in Package X break anything.

• Package Z (down-stream package that uses Package Y)

– 100% passing test suite for Package Y gives Package Z developers

confidence that they can depend on and trust the code in Package Y.

• Bottom Line:

– 100% passing test suites help to build trust between developers

– 100% passing test suites help to avoid unnecessary communication

– 100% passing test suites help to avoid synchronization points

Package Z

(down-stream)

Package Y

(reference)

Package X

(up-stream)

Page 11

Waste Created By Lack of Sufficient Pre-Checkin Testing

Upstream

Package Y

Developers

Downstream

Package Z

Developers

1) Checkin that breaks

Package Z

6) Fixes problem and

checks in
2) Checks out, builds,

tests, and detects

problems with

Package Z

Trilinos VC Repos

CI Server

3) Sends failure email to

Package Z developers

4.a) Checks out, builds, &

tests

4.b) Wastes time trying to figure out why

Package Z is failing (looks at VC logs, looks

at dashboard results, etc.)

5) Sends email to Package Y

developers to please fix the

problem

• 90% of these problems can be avoided with sufficient pre-checkin testing!

• Catching the problem before checking in saves everyone wasted time!

Page 12

Automatic Dependency Handling for Pre-Checkin Testing

$./do-configure \

-D Trilinos_ENABLE_ALL_PACKAGES:BOOL=OFF \

-D Trilinos_ENABLE_Epetra:BOOL=ON \

-D Trilinos_ENABLE_ALL_FORWARD_DEP_PACAKGES:BOOL=ON \

-D Trilinos_ENABLE_TESTS:BOOL=ON

RTOp

Teuchos Epetra

Triutils

Thyra

EpetraExt

Lib Only

Libs & Tests

Pre-Checkin Testing: The checkin-test.py script

Python script that performs safe pre-checkin testing:

$ cd SOME_BASE_DIR

$ mkdir CHECKIN; cd CHECKIN

$ $TRILINOS_HOME/cmake/python/checkin-test.py –do-all

• Automatically figures out what Trilinos packages have been changes

• Automatically enables all downstream packages

• Configures, builds and runs tests

• Built-in Configurations:

• MPI_DEBUG (Optimized compiler options, checked STL, etc.) (Do

at least this build!)

• SERIAL_RELEASE (varies other configure options)

• Only enables Primary Stable Code!

• Strong warning options (warnings as errors is a problem)

• Sends emails after each build case is finished

• Sends final email if it is okay to commit or not

• Can automatically do the commit at the end (Recommended)

• Fully customizable (enabled packages, build cases, etc.)

• Documentation: checkin-test.py --help

checkin-test.py: Example Driver Script

Script I used on my machine (checkin-test-<mymachine>.sh):

#!/bin/bash

EXTRA_ARGS=$@

echo "-DBUILD_SHARED_LIBS:BOOL=ON" > COMMON.config

echo "-DTrilinos_ENABLE_Sundance:BOOL=OFF" > SERIAL_RELEASE.config

/home/rabartl/PROJECTS/Trilinos.base/Trilinos/cmake/python/checkin-test.py \

--make-options="-j4" \

--ctest-options="-j4" \

--ctest-time-out=180 \

--commit-msg-header-file=checkin_message \

$EXTRA_ARGS

Run as (after symbolically linking into CHECKIN directory):

$./checkin-test-<mymachine>.sh –do-all –commit

Example driver scripts (I symbolically link these):

sampleScripts/checkin-test-cygwin-rabartl.sh

sampleScripts/checkin-test-<mymachine>.sh

sampleScripts/checkin-test-scicolan-rabartl.sh

…

checkin-test.py: Recommended Workflow

A) Fill out the checkin checklist message in a temporary text file

„checkin_message‟

B) Do local git commits (once we switch to git)

C) Run the checkin-test.py script:

$./checkin-test-mymachine.sh –do-all –commit

D) Go do something useful (e.g. go home, check email, review a paper, work on a

paper, talk with someone, ..)

D) Check your email later to see what happens

Consequences:

• Documents a bullet-proof process for configuring, building, and testing Trilinos

• Does the VC commands to do a safe global checkin (ease git transition)

• Enjoy fewer bad checkins

• Spend less time driving the checkin process

checkin-test.py: Log files

Directory Structure for auto-generated log files

CHECKIN/

checkin-test.out

update.out

MPI_DEBUG/

do-configure.out

make.out

ctest.out

SERIAL_RELEASE/

…

See log files while configure, build, or test is being run:

$ tail –f MPI_DEBUG/make.out

checkin-test.py: Cost of Pre-Checkin Testing (Average Case)

<fast-machine>, shared libs, from scratch

Build Type Build

(min)

Test

(min)

#tests

MPI_DEBUG 24.2 3.9 438

SERIAL_RELEASE 18.1 1.1 426

A) Enabling just ML and tests/examples in downstream packages

Enabled packages (libraries) (29/52): Teuchos, RTOp, Kokkos, Epetra, Zoltan, Shards, Triutils, Tpetra,

EpetraExt, Thyra, Isorropia, AztecOO, Galeri, Amesos, Pamgen, Ifpack, ML, Belos, Stratimikos, Meros, FEI,

Anasazi, , Sacado, Intrepid, NOX, Moertel, Rythmos, MOOCHO, Sundance

Enabled packages (tests/examples) (10/52): ML, Belos, Stratimikos, Meros, FEI, NOX, Moertel, Rythmos,

MOOCHO, Sundance

<fast-machine>, shared libs, rebuilid

Build Type Build

(min)

Test

(min)

#tests

MPI_DEBUG 0.7 4.0 438

SERIAL_RELEASE 0.4 1.2 426

<average-machine>, shared libs, from scratch

Build Type Build

(min)

Test

(min)

#tests

MPI_DEBUG 59.0 6.5 434

SERIAL_RELEASE* 30.4 1.3 350

<average-machine>, shared libs, rebuilid

Build Type Build

(min)

Test

(min)

#tests

MPI_DEBUG 1.4 6.6 434

SERIAL_RELEASE* 0.7 1.3 350

• With shared libraries, rebuilds can be very fast!

• Use a fast machine to checkin from!

* Sundance disabled on <average-machine> for serial build (see bug ???)

checkin-test.py: Cost of Pre-Checkin Testing (Worst Case)

<fast-machine>, shared libs, from scratch

Build Type Build

(min)

Test

(min)

#tests

MPI_DEBUG 48.0 8.34 1140

SERIAL_RELEASE 37.3 1.9 1147

B) Enabling Teuchos and tests/examples in downstream packages

Enabled packages (libraries) (34/52): Teuchos, RTOp, Kokkos, Epetra, Zoltan, Shards, GlobiPack, Triutils,

Tpetra, EpetraExt, Thyra, OptiPack, Isorropia, AztecOO, Galeri, Amesos, Pamgen, Ifpack, Komplex, ML,

Belos, Stratimikos, Meros, FEI, Anasazi, RBGen, Sacado, Intrepid, NOX, Moertel, Rythmos, MOOCHO,

Sundance, CTrilinos

Enabled packages (tests/examples) (22/52): Teuchos, OptiPack, Isorropia, AztecOO, Galeri, Amesos, Ifpack,

Komplex, ML, Belos, Stratimikos, Meros, FEI, Anasazi, RBGen, Sacado, Intrepid, NOX, Moertel, Rythmos,

MOOCHO, Sundance

<fast-machine>, shared libs, rebuilid

Build Type Build

(min)

Test

(min)

#tests

MPI_DEBUG 1.1 8.1 1140

SERIAL_RELEASE 1.2 2.1 1147

<average-machine>, shared libs, from scratch

Build Type Build

(min)

Test

(min)

#tests

MPI_DEBUG 103.0 12.0 1136

SERIAL_RELEASE* 63.5 2.5 1071

<average-machine>, shared libs, rebuilid

Build Type Build

(min)

Test

(min)

#tests

MPI_DEBUG 2.3 12.0 1136

SERIAL_RELEASE* 1.49 2.5 1071

* Sundance disabled on <average-machine> (see bug ???)

• Rebuilds with shared libs can be *much* faster that with static libs!

* Sundance disabled on <average-machine> for serial build (see bug ???)

checkin-test.py: Shared Libraries vs. Static Libraries

B) Enabling Teuchos and tests/examples in downstream packages

Enabled packages (libraries) (34/52): Teuchos, RTOp, Kokkos, Epetra, Zoltan, Shards, GlobiPack, Triutils,

Tpetra, EpetraExt, Thyra, OptiPack, Isorropia, AztecOO, Galeri, Amesos, Pamgen, Ifpack, Komplex, ML,

Belos, Stratimikos, Meros, FEI, Anasazi, RBGen, Sacado, Intrepid, NOX, Moertel, Rythmos, MOOCHO,

Sundance, CTrilinos

Enabled packages (tests/examples) (22/52): Teuchos, OptiPack, Isorropia, AztecOO, Galeri, Amesos, Ifpack,

Komplex, ML, Belos, Stratimikos, Meros, FEI, Anasazi, RBGen, Sacado, Intrepid, NOX, Moertel, Rythmos,

MOOCHO, Sundance

<average-machine>, static libs, from scratch

Build Type Build

(min)

Test

(min)

#tests

MPI_DEBUG 115.3 10.7 1136

SERIAL_RELEASE* 72.4 2.7 1071

<average-machine>, static libs, rebuilid

Build Type Build

(min)

Test

(min)

#tests

MPI_DEBUG 18.9 10.4 1136

SERIAL_RELEASE* 6.6 2.4 1071

<average-machine>, shared libs, from scratch

Build Type Build

(min)

Test

(min)

#tests

MPI_DEBUG 103.0 12.0 1136

SERIAL_RELEASE* 63.5 2.5 1071

<average-machine>, shared libs, rebuilid

Build Type Build

(min)

Test

(min)

#tests

MPI_DEBUG 2.3 12.0 1136

SERIAL_RELEASE* 1.49 2.5 1071

Speeding up Pre-Checkin Testing: Current Approaches

• 100% safe approaches:

• Checkin from a fast workstation no mater where you develop (easy with git)

• Keep private development and checkin builds separate

• Enabled shared libraries (-DBUILD_SHARED_LIBS:BOOL=ON)

• Keep the CHECKIN builds up to date (could use crontab or just manually)

• Less than 100% safe approaches (from better to worst):

• Do only MPI_DEBUG build (--without-serial-release)

• Disallow enabling all packages (--enable-all-packages=off)

• Example: Disables enabling all packages when cmake/TrilinosPackages.cmake

changes

• Disable forward packages (--no-enable-fwd-packages)

• Example: Only tests in the package have changed

• Example: Good unit tests and minimal changes

• Disabling specific downstream packages (--disable-packages=P1,…)

• Example: Disabling Sundance when testing Tpetra

• Enabling only specific packages (--enable-packages=P1,…)

• Example: Only test a few packages

--enable-all-packages=off --enable-packages=Tpetra,Belos,Anasazi

Improving Pre-Checkin Testing: Future Approaches

• Speeding up pre-checkin testing:

• Move to explicit template instantiation

• Forward declarations

• Use pImpl idiom (faster rebuilds)

• Remove standard C++ headers out of Package_ConfigDefs.hpp

• Trim down number of “Basic Integration” test executables

• More unit tests, faster more minimal basic integration tests

• Move to a sub-package architecture in the CMake build system

• Improving consistency of pre-checkin testing:

• Standardize versions of GCC, MPI, BLAS, LAPACK etc. …

=> Official Trilinos Developers Toolset

• Improving the portability testing of pre-checkin testing:

• Strong warnings and warnings as errors

• Requires standard versions of GCC and MPI!

=> Official Trilinos Developers Toolset

Possible improvements to the checkin-test.py script

• Convert from CVS to git (to be done very soon)

• Allow for extra user-defined build cases:

-- extra-builds=BUILD1,BUILD2,…,BUILDN

• Motivation: Allows enabling Secondary Stable and Experimental Code, enabling

extra TPLs, etc.

• Example: Test Secondary Stable Code and TPLs

$ echo “-DTPL_ENABLE_SCOTCH:BOOL=ON” >> WITH_SCOTCH.config

$./checkin-test-mymachine.sh --extra-builds=WITH_SCOTCH –do-all

• Add more unit testing

Pre-Checkin Testing: Summary

• Using this script will improve the stability of Trilinos for everyone involved!

• Bad reasons to do a sloppy checkin:

• “I want to integrate my code frequently”

=> Good motivation but not as important good testing

=> Checking in once a day is usually sufficient

• “I need to get this revision to a collaborator ASAP”

=> Just have them pull directly from your local git repository

• “In am doing porting work and can‟t afford a complete test on the machine”

=> Pull local commits back to your git local working directory your

workstation and commit from there

• “I am in a good point to checkpoint my changes”

=> Do a local git commit

• “I want to backup my work with history”

=> Use git to publish to a “backup” repository on a different machine

• “I want to checkin to feel a sense of completion”

=> Mental problem, seek help

• Please read „‟checkin-test.py –help” and give this a try!

• Please ask questions, give feedback!

Page 24

CMake Sub-Package Architecture: Motivation

Existing package dependency logic can enable many more packages than is

needed for pre-checkin testing

Example: Enable Tpetra

$ checkin-test.py --enable-packages=Tpetra –configure

• Enabled packages (libraries) (28/52): Teuchos, RTOp, Kokkos, Epetra, Zoltan, Shards, Triutils,

Tpetra, EpetraExt, Thyra, Isorropia, AztecOO, Galeri, Amesos, Pamgen, Ifpack, ML, Belos,

Stratimikos, Meros, Anasazi, RBGen, Sacado, Intrepid, NOX, Rythmos, MOOCHO, Sundance

• Enabled packages (tests/examples) (10/52): Tpetra, Belos, Stratimikos, Meros, Anasazi, RBGen,

NOX, Rythmos, MOOCHO, Sundance

=> Problem: Stratimikos, Meros, Rythmos, MOOCHO, and Sundance don‟t

execute one line of Tpetra code!

• General Problem: Current CMake build system does not respect the

existing package partitioning

Page 25

Software Engineering Theory about Packaging

Package Cohesion OO Principles:

• REP (Release-Reuse Equivalency Principle): The granule of reuse is the granule of

release.

• CCP (Common Closure Principle): The classes in a package should be closed

together against the same kinds of changes. A change that affects a closed package

affects all the classes in that package and no other packages.

• CRP (Common Reuse Principle): The classes in a package are used together. If you

reuse one of the classes in a package, you reuse them all.

Package Coupling OO Principles:

• ADP (Acyclic Dependencies Principle): Allow no cycles in the package dependency

graph.

• SDP (Stable Dependencies Principle): Depend in the direction of stability.

• SAP (Stable Abstractions Principle): A package should be as abstract as it is stable.

Problem: Many Trilinos packages violate the SE packaging principles most importantly

the CRP

Source: Martin, Robert C. Agile Software Development (Principles, Patterns, and

Practices). Prentice Hall, 2003

Page 26

CMake Sub-Package Architecture: The Idea

A

A1 A2

B

C

C1 C2

• Partitioning of Trilinos Code:

• Trilinos packages: More natural feature/social/user packages

• Trilinos sub-packages: Rigours SE packages (hidden from user)

• Speeds up pre-checkin rebuilds and testing

• Provided greater control over feature selection

• Helps to minimize superficial entangling dependencies

• Minimizes the number of top-level packages

• Hides complexity form the user

• However, some software engineering packages will still be needed due

to dependency issues

• Once we have git we can reorganize for this!

Page 27

Official Trilinos Developers Toolset: Idea and Motivation

• Idea: Define a suite of standard build and other tools along with simple global

install script

• Candidate list of software:

• GCC 4.X.Y (Fortran or no Fortran?)

• Gold ??? (fast linking)

• Open MPI ???

• CMake 2.8.X

• Git ???, eg ???

• CLAPACK ???

• Boost ???

• Doxygen ???

• Dot ???

• Motivation:

• Reduce variability in development and testing for different developers

• Turn on strong warnings and warnings as errors

• Simplify setup of new Trilinos development machines

• Allow more code to be elevated to Primary Stable Code (e.g. boost)

Page 28

Official Trilinos Developers Toolset: Install scripts

Provide global install script:

$ Install-trilinos-toolset.py –do-all –install-dir=/home/trilinos/install

• Checks out tarballs from Trilinos3PL CVS repository

• Installs all software in single bin, lib, and include directories

• Uses separate install scripts like install-cmake,py, install-git.py etc.

• Would only support basic Linux (perhaps Unix) and Mac computers (not Windows)

ToDo:

• Decide what software should be included

• Decide on versions of all the software packages

• Refactor existing install-git.py and install-cmake.py to enable faster development of

simple install steps

• Get software and write basic install scripts and global install script

• Beta users to work out bugs

• Deploy across all Trilinos developers

• Turn on warnings as errors!

• Enjoy more a stable development environment!

Page 29

Automated Installation Testing

• Idea:

• BUILD_DIR_1: Build and install Trilinos headers and libraries

$ do-configure –D CMAKE_INSTALL_PREFIX:PATH=<INSTALLPATH> …

• BUILD_DIR_2: Configure tests/examples against installed headers/libs

$ do-configure –D TRILINOS_ENABLE_TESTS:BOOL=ON \

-D TRILINOS_USE_INSTALLED_LIBS_BASE:PATH=<INSTALLPATH> …

Details:

• Would be handled automatically by the Trilinos CMake macro wappers

• Would not require any changes in Trilinos packages

• Would read from installed export makefiles to get compiler options, list of link

libraries, etc.

• Select subset of tests (only user-like tests not all unit tests)

Consequences:

• Automatic testing of installation process!

• Foundation for backward compatibility

Page 30

Backward Compatibility Considerations

• Backward compatibility is critical for:

• Safe upgrades of Trilinos releases

• Composability and compatibility of different software collections

Page 31

Example of the Need for Backward Compatibility

Xyce J+1

(released against

Trilinos X)

VTK M+1

(released against

Trilinos X+1)

Multiple releases of Trilinos presents a possible problem with complex applications

Solution:

=> Provide perfect backward compatibility of Trilinos X through Trilinos SIERRA Y+1

SIERRA Y+1

(released against

Trilinos SIERRA Y+1)

Trilinos

SIERRA

Y+1?

Page 32

Backward Compatibility Considerations

• Backward compatibility is critical for:

• Safe upgrades of Trilinos releases

• Composability and compatibility of different software collections

• Maintaining backward compatibility for all time has downsides:

• Testing/proving backward compatibility is expensive and costly

• Encourages not changing (refactoring) existing interfaces etc.

• => Leads to software “entropy” which kills a software product

• A compromise: Regulated backward compatibility (Tentative)

• Maintain a window of perfect backward compatibility over major version

numbers (e.g. 1-2 years)

• Provide “Deprecated” compiler warnings

• Example: GCC‟s __deprecated__ attribute enabled with

–DTrilinos_SHOW_DEPRCATED_WARNINGS:BOOL=ON

• Provide strong automated testing of Trilinos backward compatibility

• Drop backward compatibility between major version numbers

11.5 (Dev)

Page 33

Regulated Backward Compatibility and Version Numbering?

10.0
(Sept 2009)

11.0
(Sept 2011)

10.2 10.4 10.6

• Proposal: Trilinos Version Numbering X.Y.Z:

• X: Defines backward compatibility

• Y: Major release number in backward compatible set

• Idea: Even numbers = release, odd numbers = dev (CMake, SIERRA)

• Makes logic with Trilinos_version.h easier

• Z: Minor releases off the release branch X.Y

• Backward comparability between releases X.Y and X.Z where Z > Y

• Example: Trilinos10.6 is backward compatible with 10.0 through 10.4

• Example: Trilinos 11.X is not compatible with Trilinos 10.Y

11.2 11.4

Maintain backward compatibility of 11.0 with only 10.3 but

drop all other deprecated code!

Backward compatibility test Dev and

current release every night!

Example: Major Trilinos versions change every 2 years with 2 releases per year

Page 34

Streamline and Robustify Release Process

Stay tuned for later discussion

• Code coverage (see TrilinosCMakeQuickstart.txt)

$./do-configure -DTrilinos_ENABLE_COVERAGE_TESTING:BOOL=ON

$ make dashboard

• Memory checking (see TrilinosCMakeQuickstart.txt)

$ env CTEST_DO_MEMORY_TESTING=TRUE make dashboard

• Need a trimmer test suite to allow valgrind to run

• Namespace safety

• Don‟t pollute the global namespace, no „using namespace ANTHYING‟

• Strong warnings and warnings as errors

• Need a standard version of GCC and MPI first (Official Trilinos Toolset)

• Code reviews (arguments and evidence seems clear)

• Unit testing (see Todd‟s talk)

• Reduces need to test downstream packages

• Doxygen documentation (Need automated testing of some type)

• Improving exception safety (basic guarantee, strong guarantee, and no-fail

guarantee and memory leaks)

• Globing source and header files (SIERRA packages only)

Page 35

Other Areas of Needed Improvement and Progress

Page 36

Trilinos Software Engineering: Issues

• Partitioning of the test suite and testing efforts

• Improving stability of “Stable” code => checkin-test.py script

• CMake sub-package architecture

• Official Trilinos developers toolset

• Automated Installation testing

• Regulated backward comparability

• Streamlined and robustify release process

• Other areas of needed improvement and progress

