
Page 1

Trilinos Software Engineering

Technologies and Integration Capability

Area Overview

Roscoe A. Bartlett

http://www.cs.sandia.gov/~rabartl/

Department of Optimization & Uncertainty Estimation

Trilinos Software Engineering Technologies and Integration Lead

Sandia National Laboratories

Trilinos User Group Meeting, November 3, 2009

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,

for the United States Department of Energy under contract DE-AC04-94AL85000.

2009-7512P

Page 2

Trilinos Software Engineering Technologies and Integration

• Numerical Algorithm Interoperability and Vertical Integration

– Abstract Numerical Algorithms (ANAs)

– Thyra (Interoperability and vertical integration of ANAs)

– Epetra (Interoperability of element-based numerical algorithms)

• General Software Interoperability and Integration

– Memory management (Teuchos::RCP, ...)

– User input and configuration control (Teuchos::ParameterList, ...)

– User introspection (Teuchos::FancyOStream, ...)

• Skin packages (wrappers for other languages)

– PyTrilinos, ForTrilinos, Ctrilinos

• General Software Quality and Design

– Separation of “Stable” vs. “Experimental” code

– Day-to-day stability of “Stable” code

• Lean/Agile Software Engineering Principles and Practices

– Internal Trilinos issues

– External customer issues

Page 3

Lean/Agile Software Engineering Principles and Practices

• Internal Trilinos development tools principles and practices

– Scalability and robustness of build system and test tools

– Continuous integration development principles and practices

– Release process principles and practices

• Integration with customer application codes

– Coordination of co-development with customer application codes (i.e. daily

integration and asynchronous continuous integration)

– Coordination of release schedules with customer application codes

– Regulated backward compatibility and smooth upgrades

Page 4

Backward Compatibility Considerations

• Backward compatibility is critical for:

• Safe upgrades of Trilinos releases

• Composability and compatibility of different software collections

Page 5

Example of the Need for Backward Compatibility

Xyce J+1

(released against

Trilinos X)

VTK M+1

(released against

Trilinos X+1)

Multiple releases of Trilinos presents a possible problem with complex applications

Solution:

=> Provide perfect backward compatibility of Trilinos X through Trilinos SIERRA Y+1

SIERRA Y+1

(released against

Trilinos SIERRA Y+1)

Trilinos

SIERRA

Y+1?

Page 6

Backward Compatibility Considerations

• Backward compatibility is critical for:

• Safe upgrades of Trilinos releases

• Composability and compatibility of different software collections

• Maintaining backward compatibility for all time has downsides:

• Testing/proving backward compatibility is expensive and costly

• Encourages not changing (refactoring) existing interfaces etc.

• => Leads to software “entropy” which kills a software product

• A compromise: Regulated backward compatibility (Tentative)

• Maintain a window of perfect backward compatibility over major version

numbers (e.g. 1-2 years)

• Provide “Deprecated” compiler warnings

• Example: GCC’s __deprecated__ attribute enabled with

–DTrilinos_SHOW_DEPRCATED_WARNINGS:BOOL=ON

• Provide strong automated testing of Trilinos backward compatibility

• Drop backward compatibility between major version numbers

Dev

Page 7

Regulated Backward Compatibility for Trilinos (Tentative)

10.0
(Sept 2009)

11.0
(Sept 2011)

10.1 10.2 10.3

• Releases of Trilinos X guarantee backward comparability between releases

X.Y and X.Z where Z > Y

• Example: Trilinos10.5 is backward compatible with 10.0 through 10.4

• Example: Trilinos 11.X is not compatible with Trilinos 10.Y

• Major Trilinos version numbers change every 1-2 years

• Example: Major Trilinos versions change every 2 years with 2 releases

per year

11.1 11.2

Maintain backward compatibility of 11.0 with only

10.3 but drop all other deprecated code!

• Actual Target (Tentative):

• Keep major Trilinos version number for two years

• Put out releases quarterly (with minor releases X.Y.Z as needed)

Backward compatibility test Dev

and current release every night!

Page 8

Trilinos Software Engineering Capabilities Area Webpage

http://trilinos.sandia.gov/capability_areas.html

http://trilinos.sandia.gov/capability_areas.html

