
New Teuchos Utility Classes for Safer Memory
Management in C++

Roscoe A. Bartlett
Department of Optimization & Uncertainty Estimation

Sandia National Laboratories

Trilinos Users Group Meeting, November 7th, 2007

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy under contract DE-AC04-94AL85000.

SAND2007-7237C

Current State of Memory Management in Trilinos C++ Code

• The Teuchos reference-counted pointer (RCP) class is being widely used

– Memory leaks are becoming less frequent (but are not completely gone => circular
references!)

– Fewer segfaults from uninitailized pointers and accessing deleted objects …

• However, we still have problems …

– Segfaults from improper usage of arrays of memory (e.g. off-by-one errors etc.)

– Improper use of other types of data structures

• The core problem? => Ubiquitous high-level use of raw C++ pointers in our
application (algorithm) code!

• What I am going to address in this presentation:

– Adding new Teuchos utility classes similar to Teuchos::RCP to encapsulate usage of
raw C++ pointers for:

• handling of single objects

• handling of contiguous arrays of objects

– New Teuchos utility classes without reference counting to eliminate all raw pointers

Outline

• Background

• High-level philosophy for memory management

• Existing STL classes

• Overview of Teuchos Memory Management Utility Classes

• Challenges to using Teuchos memory management utility classes

• Wrap up

Outline

• Background

– Background on C++

– Problems with using raw C++ pointers at the application programming level

• High-level philosophy for memory management

• Existing STL classes

• Overview of Teuchos Memory Management Utility Classes

• Challenges to using Teuchos memory management utility classes

• Wrap up

Popularity of Programming Languages

Source: http://www.tiobe.com

• C++ is only the 4th most popular
language

• C is almost twice as popular as
C++ (so much for object-oriented
programming)

• Java and Visual Basic popularity
together are at least 4 times
more popular than C++

• Fortran is hardly a blip

– C++ is 20 times more popular

– Java is 40 times more popular

The ratings are based on:

• world-wide availability of skilled
engineers

• available courses

• third party vendors

• only max of language dialects

Referenced in appendix of [Booch, 2007]

Declining Overall Popularity of C++

Source: http://www.tiobe.com

����������	
����
�
����
��
�

• Highest Rating (since 2001): 17.531%
(3rd position, August 2003)

• Lowest Rating (since 2001): 9.584%
(4th position, October 2007)

���������	
����
�
����
��
�

• Highest Rating (since 2001): 3.987%
(7th position, August 2007)

• Lowest Rating (since 2001): 0.384%
(22nd position, August 2001)

• C++ is about half as popular as it was 4 years ago!
=> Is C++ is on it’s way out? => Of course not, but it’s popularity is declining!

• C# is more than twice as popular as it was 4 years ago
=> Will C# mostly replace C++? => Depends if C# expands past .NET!

Implications for the Decline in Popularity of C++

• Fewer and lower-quality tools for C++ in the future for:

– Debugging?

– Automated refactoring?

– Memory usage error detection?

– Others?

• Fewer new hirers will know C++ in the future

– Bad news since C++ is already very hard to learn in the first place!

• Who is going to take over the maintenance of our C++ codes?

– However, the extremely low and declining popularity of Fortran does not
stop organizations from using it either …

The Good and the Bad for C++ for Scientific Computing

• The good:
– Better ANSI/ISO C++ compilers now available for most of our important

platforms
• GCC is very popular for academics, produces fast code on Linux
• Red Storm and the PGI C++ compiler (gone is Janus)
• etc …

– Easy interoperability with C, Fortran and other languages
– Very fast native C++ programs
– Precise control of memory (when, where, and how)
– Support for generics (i.e. templates), operator overloading etc.

• Example: Sacado! Try doing that in another language!
– If Fortran is so unpopular then why are all of our customers using it?

=> C++ will stay around for a long time if we are productive using it!
• The bad:

– Language is complex and hard to learn
– Language has been cobbled together over many years constrained by C

and backward compatibility => Incompatible features (e.g. new/delete and
exception handling, see CPPCS, Item 13)

– Memory management is still difficult to get right

Preserving our Productivity in C++ in Modern Times

• Support for modern software engineering methodologies

• Test Driven Development (easy)

• Other modern software engineering practices (code reviews supported by
coding standards, etc.)

• Refactoring => No automated refactoring tools!

• Safe memory management

• Avoiding memory leaks

• Avoiding segmentation faults from improper memory usage

• Training and Mentoring?

• There is no silver bullet here!

Refactoring Support: The Pure Nonmember Function Interface Idiom

• Unifies the two idoms:

– Non -Virtual Interface (NVI)
idiom [Meyers, 2005], [Sutter &
Alexandrescu, 2005]

– Non-member Non-friend
Function idiom [Meyers, 2005],
[Sutter & Alexandrescu, 2005]

• Uses a uniform nonmember function
interface for very “stable” classes
(see [Martin, 2003] for this definition
of “stable”)

• Allows for refactorings to virtual
functions without breaking client
code

• Doxygen \relates feature attaches
link to nonmember functions to the
classes they are used with.

SAND2007-4078

Outline

• Background

– Background on C++

– Problems with using raw C++ pointers at the application programming level

• High-level philosophy for memory management

• Existing STL classes

• Overview of Teuchos Memory Management Utility Classes

• Challenges to using Teuchos memory management utility classes

• Wrap up

Problems with using Raw Pointers at the Application Level

• The C/C++ Pointer:
Type * pt r ;

• Problems with C/C++ Pointers

– No default initialization to null => Leads to segfaults
i nt * pt r ;
pt r [20] = 5; / / BANG!

– Using to handle memory of single objects
i nt * pt r = new i nt ;
/ / No good can ever come of :
pt r ++, pt r - - , ++pt r , - - pt r , pt r +i , pt r - i , pt r [i]

– Using to handle arrays of memory:
i nt * pt r = new i nt [n] ;
/ / These ar e t ot al l y unchecked:
* (pt r ++) , * (pt r - -) , pt r [i]

– Creates memory leaks when exceptions are thrown:
i nt * pt r = new i nt ;
f unct i onThat Thr ows(pt r) ;
del et e pt r ; / / Wi l l never be cal l ed i f above f unct i on t hr ows!

• How do we fix this?
– Memory leaks? => Reference-counted smart pointers (not a 100% guarantee)

– Segfaults? => Memory checkers like Valgrind and Purify? (far from a 100% guarantee)

Ineffectiveness of Memory Checking Utilities

• Memory checkers like Valgrind and Purify only know about stack and heap
memory requested from the system!
=> Memory managed by the library or the user program is totally unchecked

• Examples:

• Library managed memory (e.g. GNU STL allocator)

���������	
���	�
�	
���	��	�������	�����	�����

valgrind
“red zone”

valgrind
“red zone”

library management regions
memory given to application
untouched memory

• Program managed memory

One big array allocated from the heap by user program using new[]

Sub-array given to
subrountine for processing

Read/writing outside of slice will
never be caught by valgrind!

Writing into “management”
regions is not caught by valgrind!

Memory checkers can never sufficiently verify your program!

What is the Proper Role of Raw C++ Pointers?

AVOID USING RAW POINTERS AT THE APPLICATION PROGRAMMING LEVEL!

If we can’t use raw pointers at the application level, then how can we use them?

– Basic mechanism for communicating with the compiler

– Extremely well-encapsulated, low-level, high-performance algorithms

– Compatibility with other software (again, at a very low, well-encapsulated level)

For everything else, let’s use (existing and new) classes to more safely encapsulate
our usage of memory!

Outline

• Background

• High-level philosophy for memory management

• Existing STL classes

• Overview of Teuchos Memory Management Utility Classes

• Challenges to using Teuchos memory management utility classes

• Wrap up

Memory Management: Safety vs. Cost, Flexibility, and Control

• How important is a 100% guarantee that memory will not be misused?

– I will leave that as an open question for now

• Two kinds of features (i.e. guarantees)

– Memory access checking (e.g. array bounds checking etc.)

– Memory cleanup (e.g. garbage collection)

• Extreme approaches:

– C: All memory is handled by the programmer, few if any language tools for safety

– Python: All memory allocation and usage is controlled and/or checked by the runtime
system

• A 100% guarantee comes with a cost in:

– Speed: Checking all memory access at runtime can be expensive (e.g. Matlab,
Python, etc.)

– Flexibility: Can’t place objects where ever we want to (e.g. no placement new)

– Control: Controlling exactly when memory is acquired and given back to the system
(e.g. garbage collections running at bad times can kill parallel scalability)

Memory Management Philosophy: The Transportation Metaphor

• Little regard for safely, just speed: Riding a motorcycle with no helmet, in
heavy traffic, going 100 MPH, doing a wheelie

=> Coding in C/C++ with only raw pointers at the application programming level

• An almost 100% guarantee: Driving a reinforced tank with a Styrofoam suit,
racing helmet, Hans neck system, 10 MPH max speed

=> All coding in a fully checked language like Java, Python, or Matlab

• Reasonable safety precautions (not 100%), and good speed: Driving a car,
wearing a seat belt, driving speed limit, defensive driving, etc.

How do we get there? => We can get there from either extreme …

– Sacrificing speed & efficiency for safely: Go from the motorcycle to the car:

=> Coding in C++ with memory safe utility classes

– Sacrificing some safely for speed & efficiency: Going from the tank to the to the car:

=> Python or Java for high-level code, C/C++ for time critical operations

Before we make a mad rush to Java/Python for the sake of safer memory usage
lets take another look at making C++ safer

Outline

• Background

• High-level philosophy for memory management

• Existing STL classes

– What about std::vector?

• Overview of Teuchos Memory Management Utility Classes

• Challenges to using Teuchos memory management utility classes

• Wrap up

Semantics of STL Containers: std::vector

st d: : vect or <T> for continuous data

• Stored data type T must be a value type

– Default constructor: T: : T()

– Copy constructor: T: : T(const T&)

– Assignment operator: T& T: : oper at or =(const T&)

• Non-const std::vector<T>

st d: : vect or <T> v;

– Can change shape of the container (add elements, remove elements etc.)

– Can change element objects

• Const std::vector<T>

const st d: : vect or <T> &cv = v;

– Can not change the shape of the container

– Can not change the elements

– Can only read elements (e.g. val = cv[i]);

General Problems with using std::vector at Application Level

• Usage of std::vector is not checked

st d: : vect or <T> v;
…
a[i] ; / / Unchecked
* (a. begi n() +i) ; / / Unchecked
f or (… ; a1. begi n() ! = a2. end() ; …) { … } / / Unchecked

• What about std::vector::at(i)?

/ / Ar e you goi ng t o wr i t e code l i ke t hi s?
#i f def DEBUG

val = a. at (i) ; / / Real l y bad er r or message i f t hr ows!
#el se

val = a[i] ;
#endi f

• What about checking iterator access? => There is no equivalent to at(i)

• Specialized STL memory allocators disarm memory checking tools!

• What about a checked implementation of the STL?

– “Use a checked STL implementation”: Item 83, C++ Coding Standards
– This has to be part of your everyday programming toolbox!

– Okay, there is a checked STL with g++ (see _GLIBCXX_DEBUG)

Problems with using std::vector as Function Arguments

• Using a raw pointer to pass in an array of objects to modify
void foo (T v[], const int n)

– Allows function to modify elements (good)

– Allows for views of larger data (good)
– Requires passing the dimension separately (bad)

– No possibility for memory usage checking (bad)

• Using a std::vector to pass in an array of objects to modify
void foo(std::vector<T> &v)

– This allows functions to modify elements (good)

– Keeps the dimension together with data (good)

– Allows function to also add and remove elements (usually bad)
– Requires copy of data for subviews (bad)

• Using a std::vector to pass in an array of const objects
void foo(const std::vector<T> &v)
– Requires copy of data for subviews (bad)

– You are throwing away 95% of the functionality of std::vector!

Sub-array given to
subrountine for processing

Yes there is an
std::valarray class
but that has lots of

problems too!

Outline

• Background

• High-level philosophy for memory management

• Existing STL classes

• Overview of Teuchos Memory Management Utility Classes

– Introduction

– Management of single objects

– Management for arrays of objects

– Usage of Teuchos utility classes as data objects and as function arguments

• Challenges to using Teuchos memory management utility classes

• Wrap up

Basic Strategy for Safer “ Pointer Free” Memory Usage

• Encapsulate raw pointers in specialized utility classes
– In a debug build (--enable-teuchos-debug), all access to memory is checked at

runtime … Maximize runtime checking and safety!

– In an optimized build (default), no checks are performed giving raw pointer
performance … Minimize/eliminate overhead!

• Define a different utility class for each major type of use case:
– Single objects (persisting and non-persisting associations)

– Containers (arrays, maps, lists, etc.)
– Views of arrays (persisting and non-persisting associations)

– etc …

• Allocate all objects in a safe way (i.e. don’t call new directly at the application
level!)

– Use non-member constructor functions that return safe wrapped objects (See
SAND2007-4078)

• Pass around encapsulated pointer(s) to memory using safe (checked)
conversions between safe utility class objects

Definitions:
• Non-persisting association: Association that only exists within a single function call

• Persisting association: Association that exists beyond a single function call and where
some “memory” of the object persists

Outline

• Background

• High-level philosophy for memory management

• Existing STL classes

• Overview of Teuchos Memory Management Utility Classes

– Introduction

– Management of single objects

– Management for arrays of objects

– Usage of Teuchos utility classes as data objects and as function arguments

• Challenges to using Teuchos memory management utility classes

• Wrap up

Utility Classes for Memory Management of Single Classes

• Teuchos::RCP (Long existing class, first developed in 1997!)
RCP<T> p;

– Smart pointer class (e.g. usage looks and feels like a raw pointer)

– Uses reference counting to decide when to delete object
– Used for persisting associations with single objects

– Allows for 100% flexibility for how object gets allocated and deallocated

– Used to be called Teuchos::RefCountPtr

• See the script teuchos/refactoring/change-RefCountPtr-to-RCP-20070619.sh
– Counterpart to boost::shared_ptr and std::tr1::shared_ptr

• Teuchos::Ptr (New class)
void foo(const Ptr<T> &p);

– Smart pointer class (e.g. operator->() and operator*())

– Light-weight replacement for raw pointer T* to a single object
– Default constructs to null

– No reference counting! Used only for non-persisting association function arguments

– In a debug build, throws on dereferences of null

– Integrated with other memory utility classes

– No counterpart to boost or C++0x

Teuchos::RCP Technical Report

SAND2007-4078

http://trilinos.sandia.gov/documentation.html

Conversions Between Single-Object Memory Management Types

<<implicit conversion>>

Legend

<<explicit conversion>>

Ptr<T>

RCP<T>

T*

T&

get () AVOI D THI S!

get () AVOI D THI S!

oper at or *

oper at or *

<Der i ved> t o <Base>

<T> t o <const T>

pt r ()
<Der i ved> t o <Base>

<T> t o <const T>

pt r ()

Outline

• Background

• High-level philosophy for memory management

• Existing STL classes

• Overview of Teuchos Memory Management Utility Classes

– Introduction

– Management of single objects

– Management for arrays of objects

– Usage of Teuchos utility classes as data objects and as function arguments

• Challenges to using Teuchos memory management utility classes

• Wrap up

Utility Classes for Memory Management of Arrays of Objects

• Teuchos::ArrayView (New class) => No equivenent in boost or C++0x
voi d f oo(const Ar r ayVi ew<T> &v) ;
– Used to replace raw pointers as function arguments to pass arrays
– Used for non-persisting associations only (i.e. only function arguments)
– Allows for 100% flexibility for how memory gets allocated and sliced up
– Minimal overhead in an optimized build, just a raw pointer and a size integer

• Teuchos::ArrayRCP (Failry new class) => Counterpart to boost::array_ptr
Ar r ayRCP<T> v;
– Used for persisting associations with fixed size arrays
– Allows for 100% flexibility for how memory gets allocated and sliced up
– Uses same reference-counting machinery as Teuchos::RCP
– Gives up (sub)views as Teuchos::ArrayView objects

• Teuchos::Array (Existing class but majorly reworked)
Ar r ay<T> v;
– A general purpose container class like std::vector (actually uses std::vector within)
– All usage is runtime checked in a debug build
– Gives up (sub)views as Teuchos::ArrayView objects

• Teuchos::Tuple (New class) => Counterpart to boost::array
Tuple<T,N> t;
– Statically sized array class (replacement for built-in T[N])
– Gives up (sub)views as Teuchos::ArrayView objects

Raw Pointers and [Array]RCP : const and non-const

Raw C++ Pointers RCP

t ypedef A* pt r _A; RCP<A>

t ypedef const A* pt r _const _A; RCP<const A>
equivalent to
equivalent to

non-const pointer to non-const object
pt r _A a_pt r ;
A * a_pt r ;

RCP<A> a_pt r ;equivalent to

const pointer to non-const object

const pt r _A a_pt r ;
A * const a_pt r ;

const RCP<A> a_pt r ;equivalent to

non-const pointer to const object

pt r _const _A a_pt r ;
const A * a_pt r ;

RCP<const A> a_pt r ;equivalent to

const pointer to const object
const pt r _const _A a_pt r ;
const A * const a_pt r ;

const RCP<const A> a_pt r ;equivalent to

an address A’s data
a_pt r

Important Point: A pointer object a_pt r of type
A* is an object just like any other object with
value semantics and can be const or non-const

A a;
A* a_pt r = &a;

a

Example:

Remember
this

equivalence!

an address A’s data

an address A’s data

an address A’s data

an address A’s data

Teuchos::ArrayRCP

t empl at e<cl ass T>
cl ass Ar r ayRCP {
pr i vat e:

T * pt r _; / / Non- debug i mpl ement at i on
Or di nal l ower Of f set _;
Or di nal upper Of f set _;
RCP_node * node_; / / Ref er ence count i ng machi ner y

• General purpose replacement for raw C++ pointers to deal with contiguous
arrays of data and uses reference counting

• Supports all of the good pointer operations for arrays and more:
++pt r , - - pt r , pt r ++, pt r - - , pt r +=i / / I ncr ement s t o t he poi nt er
* pt r , pt r [i] / / El ement access (debug checked)
pt r . begi n() , pt r . end() / / Ret ur ns i t er at or s (debug checked)

• Support for const and non-const:
Ar r ayRCP<T> / / non- const poi nt er , non- const el ement s
const Ar r ayRCP<T> / / const poi nt er , const el ement s
Ar r ayRCP<const T> / / non- const poi nt er , const el ement s
const Ar r ayRCP<const T> / / const poi nt er , const el ement s

• Does not support bad pointer array operations:
Ar r ayRCP<Base> p2 = Ar r ayRCP<Der i ved>(r awPt r) ; / / Doesn’ t compi l e!

• ArrayRCP is reused for all checked iterator implementations!

Teuchos::ArrayView

t empl at e<cl ass T>
cl ass Ar r ayVi ew {
pr i vat e:

T * pt r _; / / Non- debug i mpl ement at i on
Or di nal s i ze_;

• Lightweight replacement for raw C++ pointers to deal with contiguous arrays
passed into functions

• Only support array indexing and iterators:
pt r [i] / / I ndexi ng t he poi nt er t o access el ement s
pt r . begi n() , pt r . end() / / Ret ur ns i t er at or s (debug checked)

• Uses ArrayRCP under the hood for debug-only checked implementation!

• Support for const and non-const element access
Ar r ayVi ew<T> / / non- const el ement s
Ar r ayVi ew<const T> / / const el ement s

Teuchos::Array

t empl at e<cl ass T>
cl ass Ar r ay {
pr i vat e:

st d: : vect or <T> vec_; / / Non- debug i mpl ement at i on

• Thin, inline wrapper around std::vector

• Debug checked element access:
a[i] / / Debug r unt i me checked
a[- 1] / / Thr ows except i on i n debug bui l d!
a[a. s i ze()] / / Thr ows except i on i n debug bui l d!

• Debug checked iterators (uses ArrayRCP):
* (pt r . begi n() +i) / / Debug r unt i me checked
* (pt r . begi n- 1) / / Thr ows except i on i n debug bui l d!
* (pt r . end()) / / Thr ows except i on i n debug bui l d!

• Supports copy conversions to and from std::vector

• Nonmember constructors

Ar r ay<T> a = ar r ay(obj 1, obj 2, …) ;

• Gives up views as ArrrayView objects

Ar r ay<T> a; . . .
someFunc(a(1, n)) ;

<<implicit copy conversion>>

Conversions Between Array Memory Management Types

<<implicit view conversion>>

<<explicit view conversion>>

Array<T>

RCP<Array<T> >

RCP<std::vector<T> >

std::vector<T>

T*

<<explicit copy conversion>>

<T> t o
<const T>

<T> t o
<const T>

ArrayRCP<T>

ar cp(…)

ar cp(…)

get RawPt r ()get RawPt r ()

get RawPt r ()

cr eat eVect or (a)

cr e
at

eV
ec

t o
r (a

v)

Tuple<T,N>

ArrayView<T>

Outline

• Background

• High-level philosophy for memory management

• Existing STL classes

• Overview of Teuchos Memory Management Utility Classes

– Introduction

– Management of single objects

– Management for arrays of objects

– Usage of Teuchos utility classes as data objects and as function arguments

• Challenges to using Teuchos memory management utility classes

• Wrap up

Class Data Member Conventions for Arrays

• Uniquely owned array, expandable (and contractible)

Ar r ay<T> a_;

• Shared array, expandable (and contractible)

RCP<Ar r ay<T> > a_;

• Shared array, fixed size

Ar r ayRCP<T> a_;

– Advantages:

• Your class object can allocate the array as ar cp(si ze)

• Or, you class object can accept a pre-allocated array from client

=> Allows for efficient views of larger arrays

• The original array will be deleted when all references are removed!

Warning! Never use Teuchos: : Ar r ayVi ew<T> as a class data member!

– Ar r ayVi ew is never to be used for a persisting relationship!

– Also, avoid using Ar r ayVi ew for stack-based variables

Function Argument Conventions : Single Objects, Value or Reference

• Non-changeable, non-persisting association, required

const T &a

• Non-changeable, non-persisting association, optional

const Pt r <const T> &a

• Non-changeable, persisting association, required or optional

const RCP<T> &a

• Changeable, non-persisting association, optional

const Pt r <T> &a

• Changeable, non-persisting association, required

const Pt r <T> &a
or
T &a

• Changeable, persisting association, required or optional

const RCP<const T> &a

Increases the vocabulary of you program! => Self Documenting Code!

Even if you don’t want to use these conventions you still have to
document these assumptions in some way!

Function Argument Conventions : Arrays of Value Objects

• Non-changeable elements, non-persisting association
const Ar r ayVi ew<const T> &a

• Non-changeable elements, persisting association
const Ar r ayRCP<const T> &a

• Changeable elements, non-persisting association
const Ar r ayVi ew<T> &a

• Changeable elements, persisting association
const Ar r ayRCP<T> &a

• Changeable elements and container, non-persisting association
const Pt r <Ar r ay<T> > &a

or
Ar r ay<T> &a

• Changeable elements and container, persisting association
const RCP<Ar r ay<T> > &a

Warning!

• Never use const Ar r ay<T>& => use Ar r ayVi ew<const T>&

• Never use RCP<const Ar r ay<T> >& => use Ar r ayRCP<const T>&

Function Argument Conventions : Arrays of Reference Objects

• Non-changeable objects, non-persisting association
const Ar r ayVi ew<const Pt r <const A> > &a

• Non-changeable objects, persisting association
const Ar r ayVi ew<const RCP<const A> > &a

• Non-changeable objects, changeable pointers, persisting association
const Ar r ayVi ew<RCP<const A> > &a

• Changeable objects, non-persisting association
const Ar r ayVi ew<const Pt r <A> > &a

• Changeable objects, persisting association
const Ar r ayVi ew<const RCP<A> > &a

• Changeable objects and container, non-persisting association

Ar r ay<Pt r <A> > &a or const Pt r <Ar r ay<Pt r <A> > > &a

• Changeable objects and container, non-persisting container, persisting objects

Ar r ay<RCP<A> > &a or const Pt r <Ar r ay<RCP<A> > > &a

• Changeable objects and container, persisting assoc. container and objects
const RCP<Ar r ay<RCP<A> > > &a

• And there are other use cases!

Outline

• Background

• High-level philosophy for memory management

• Existing STL classes

• Overview of Teuchos Memory Management Utility Classes

• Challenges to using Teuchos memory management utility classes

• Wrap up

Challenges for Incorporating Teuchos Utility Classes

• More classes to remember

– However, this increases the vocabulary of your programming environment!

=> More self documenting code!

• Implicit conversions not supported as well as for raw C++ pointers

– Avoid overloaded functions involving these classes!

• Refactoring existing code?

– Internal Trilinos code? => Not so hard but we need to be careful

– External Trilinos (user) code? => Harder to upgrade “published” interfaces but
manageable [Folwer, 1999]

How can we smooth the impact of these and other refactorings?

Refactoring, Deprecated Functions, and User Support

• How can we refactor existing code and smooth the transition for dependent code?

=> Keep deprecated functions but ifdef them (supported for one release cycle?)

• Example: Existing Epetra function:

cl ass Epet r a_Mul t i Vect or {
publ i c:

Repl aceGl obal Val ues(i nt NumEnt r i es, doubl e * Val ues, i nt * I ndi ces) ;
} ;

• Refactored function:

cl ass Epet r a_Mul t i Vect or {
publ i c:

/ / New f unct i on
Repl aceGl obal Val ues(const Ar r ayVi ew<const doubl e> &Val ues,

const Ar r ayVi ew<const i nt > &I ndi ces) ;
#i f def TRI LI NOS_ENABLE_DEPRI CATED_FEATURES

/ / Depr ecat ed f unct i on
Repl aceGl obal Val ues(i nt NumEnt r i es, doubl e * Val ues, i nt * I ndi ces)
{ Repl aceGl obal Val ues(ar r ayVi ew(Val ues, NumEnt r i es) ,

ar r ayVi ew(I ndi ces, NumEnt r i es)) ; }
#endi f
} ;

• How does this help users?

Refactoring, Deprecated Functions, and User Support

Upgrade process for user code:

1. Add -DTRILINOS_ENABLE_DEPRICATED_FEATURES to build Trilinos and user code

2. Test user code (should compile right away)

3. Selectively turn off -DTRILINOS_ENABLE_DEPRICATED_FEATURES in user code and let
compiler show code what needs to updated, Example:

/ / user Func. cpp
#undef TRI LI NOS_ENABLE_DEPRI CATED_FEATURES
#i ncl ude “ Epet r a_Mul t i Vect or . hpp”
voi d user Func(Epet r a_Mul t i Vect or &V)
{

st d: : vect or <doubl e> val ues(n) ; …
st d: : vect or <doubl e> i ndi ces(n) ; …
V. Repl aceGl obal Val ues(n, &val ues[0] , &i ndi ces[0]) ; / / No compi l e

}
4. Fix a few function calls, Example:

V. Repl aceGl obal Val ues(val ues, i ndi ces) ; / / Now t hi s wi l l compi l e!

5. Turn -DTRILINOS_ENABLE_DEPRICATED_FEATURES back on and rebuild

6. Run user tests and get all of them to pass before moving on [Fowler, 1999]

7. Repeat steps 3 through 6 for all user code until all deprecated calls are gone!

User code is safely and incrementally upgraded!

Outline

• Background

• High-level philosophy for memory management

• Existing STL classes

• Overview of Teuchos Memory Management Utility Classes

• Challenges to using Teuchos memory management utility classes

• Wrap up

Teuchos classes verses boost/C++0x classes

• Teuchos provides complete system of low-level types to replace raw C++
pointers

=> Avoids all raw pointers at application level => safer code
=> Boost and C++0x do not

• Teuchos classes throw exceptions in debug mode
=> Makes unit tests easier to write
=> Boost classes can be made to? Not sure about compatibility issues?
=> Not sure of g++ checked STL can?

• Teuchos reference-counting classes have optional debug tracking mode to catch
and diagnose circular references

=> Helps to diagnose tricking circular reference problem (e.g. NOX, Tpetra,
AztecOO/Thyra adapters)

=> Nothing like this in boost (yet). => Might use sp_scalar_constructor_hook(...)?
• Teuchos reference-counted classes are two-way compatible with Boost/C++0x

reference-counted classes
– e.g. see teuchos/test/MemoryManagement/RCP_test.cpp
– You don’t have to pick on implementation of for all code!

• We control Teuchos, we can’t control/change boost
=> Modifying our own version of boost classes would be incompatible with other code
=> Can’t assume other code has not also used the “hooks”

• You can’t mix and match Teuchos view classes and boost/C++0x classes and
have strong debug runtime checking => Internal details must be shared!

Next Steps

• Finish development and testing of these Teuchos memory management utility
classes => Done

• Address circular reference problems with dual-mode Teuchos::[Array]RCP
classes

– See Trilinos/doc/RefCountPtr/ideas/WeakPointersModeForTeuchosRCP.ppt

• Incorporate them into a lot of Trilinos software

– Initially: teuchos, rtop, thyra, stratimikos, rythmos, moocho, …

– Get practical experience in the use of the classes and refine their design

• Write a detailed technical report describing these memory management classes

• Update Trilinos to work with checked STL (g++ _GLIBCXX_DEBUG)

• Encourage the assimilation of these classes into more Trilinos and user software
(much like was done for Teuchos::RCP)

– Prioritize what to refactor based on risk and other factors

Make memory leaks and segfaults a rare occurrence!

Conclusions

• Using raw pointers at too high of a level is the source of nearly all memory
management and usage issues in C++ (e.g. memory leaks and segfaults)

• STL classes do not offer runtime flexibility in allocation and views of data

• Memory checking tools like Valgrind and Purify will never be able to sufficiently
verify our C++ programs

– Declining popularity of C++ means we will have less support for tools for refactoring,
debugging, memory checking, etc.

• Boost and C++0x libraries do not provide a sufficient integrated solution

• Teuchos: : RCP has been effective at reducing memory leaks of all kinds but we
still have segfaults (e.g. array handling, off-by-one errors, etc.)

• New Teuchos classes Ar r ay , Ar r ayRCP, Ar r ayVi ew, and Tupl e, allow for
safe (debug runtime checked) use of contiguous arrays of memory but very high
performance in an optimized build

• Much Trilinos software will be updated to use these new classes

• Deprecated features will be maintained along with a process for supporting
smooth and safe user upgrades

• A detailed technical report will be written to explain all of this

References:

[Martin, 2003] Robert C. Martin, Agile Software Development: Principles, Patterns,
and Practices, Prentice Hall, 2003

[Meyers, 2005] Scott Meyers, Effective C++: Third Edition, Addison-Wesley, 2005

[Sutter & Alexandrescu, 2005], C++ Coding Standards, Addison-Wesley, 2005

[Fowler, 199] Martin Fowler, Refactoring, Addison-Wesley, 1999

The End

THE END

