MS17

A Case Study on the Vertical Integration of Trilinos Solver Algorithms with a Production Application Code

Organizer: Roscoe A. Bartlett

Sandia National Laboratories

10:00-10:25 Overview of the Vertical Integration of Trilinos Solver Algorithms in a Production Application Code

Roscoe A. Bartlett, Sandia National Laboratories

10:30-10:55 Analytic Sensitivities in Large-scale Production Applications via Automatic Differentiation with Sacado

Eric Phipps, Sandia National Laboratories

11:00-11:25 To PDE Components and Beyond

Andy Salinger, Sandia National Laboratories

11:30-11:55 Analysis Tools for Large-scale Simulation with Application to the Stationary Magnetohydrodynamics Equations

Roger Pawlowski, Eric Phipps, Heidi K. Thornquist, and Roscoe A. Bartlett, Sandia National Laboratories
Overview of the Vertical Integration of Trilinos Solver Algorithms in a Production Application Code

Roscoe A. Bartlett
Department of Optimization & Uncertainty Estimation

http://www.cs.sandia.gov/~rabartl

Sandia National Laboratories

March 13th, 2008
Overview of Trilinos Vertical Integration Project (Milestone)

• **Goal:** Vertically integrate Trilinos solver algorithms in Trilinos to build new predictive embedded analysis capabilities
 • **Impact:** Vertically integrated 10+ Trilinos algorithm packages
• **Goal:** Demonstrate on relevant production applications
 • **Impact:** Solved steady-state parameter estimation problems and transient sensitivities on semiconductor devices in Charon
 • **Impact:** Solved Eigen problems on MHD problem in Charon
• **Added Goal:** Explore refined models of collaboration between production application developers and algorithm researchers.
 • **Impact:** Closer collaboration between application and algorithm developers yielding better algo and app R&D

Outline

- Overview of Trilinos and Charon
- Overview of vertical solver algorithm integration
- Moving beyond the forward solve
 - Challenges/barriers to embedded analysis methods
 - Enabling methods
- Examples of vertically integrated algorithms with Trilinos and Charon
- Steady-state parameter estimation optimization with MOOCHO/Charon
Outline

- Overview of Trilinos and Charon

- Overview of vertical solver algorithm integration

- Moving beyond the forward solve
 - Challenges/barriers to embedded analysis methods
 - Enabling methods

- Examples of vertically integrated algorithms with Trilinos and Charon

- Steady-state parameter estimation optimization with MOOCHO/Charon
Overview of Trilinos

- Provides a suite of numerical solvers to support predictive simulation for Sandia’s customers

 => Scope has expanded to include discretizations methods, …!
- Provides a decoupled and scalable development environment to allow for algorithmic research and production capabilities => “Packages”
- Provides support for growing SQA requirements
- Mostly C++ with some C, Fortran, Python …
- Advanced object-oriented and generic C++ …

Current Status

- Current release: Trilinos 8.0.x (September 2007)
- Next release Trilinos 9.0 (September 2008)

Trilinos website

http://trilinos.sandia.gov
Trilinos (8.0 & 9.0+) Package Summary

<table>
<thead>
<tr>
<th>Objective</th>
<th>Package(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discretizations</td>
<td>Meshing & Spatial Discretizations</td>
</tr>
<tr>
<td>Methods</td>
<td>Automatic Differentiation and UQ Prop.</td>
</tr>
<tr>
<td>Core</td>
<td>Mortar Methods</td>
</tr>
<tr>
<td>Solvers</td>
<td>Linear algebra objects</td>
</tr>
<tr>
<td>Load Balancing</td>
<td>Abstract interfaces</td>
</tr>
<tr>
<td>“Skins”</td>
<td>Epetra, Jpetra, Tpetra</td>
</tr>
<tr>
<td>C++ utilities, (some) I/O</td>
<td>Thyra, Stratimikos, RTOp</td>
</tr>
<tr>
<td>Solvers</td>
<td>Iterative (Krylov) linear solvers</td>
</tr>
<tr>
<td>Direct sparse linear solvers</td>
<td>Amesos</td>
</tr>
<tr>
<td>Direct dense linear solvers</td>
<td>Epetra, Teuchos, Pliris</td>
</tr>
<tr>
<td>Iterative eigenvalue solvers</td>
<td>Anasazi</td>
</tr>
<tr>
<td>ILU-type preconditioners</td>
<td>AztecOO, IFPACK</td>
</tr>
<tr>
<td>Multilevel preconditioners</td>
<td>ML, CLAPS</td>
</tr>
<tr>
<td>Block preconditioners</td>
<td>Meros</td>
</tr>
<tr>
<td>Nonlinear system solvers</td>
<td>NOX, LOCA</td>
</tr>
<tr>
<td>Time Integration & Sensitivities</td>
<td>Rythmos</td>
</tr>
<tr>
<td>Analysis</td>
<td>Optimization (SAND)</td>
</tr>
<tr>
<td></td>
<td>MOOCHO, Aristos</td>
</tr>
</tbody>
</table>

Green: Packages used in Vertical Integration Milestone
Gray: New packages that will be included in Trilinos 9.0 (September 2008) or later
Trilinos Strategic Goals

- **Scalable Computations**: As problem size and processor counts increase, the cost of the computation will remain nearly fixed.
- **Hardened Computations**: Never fail unless problem essentially intractable, in which case we diagnose and inform the user why the problem fails and provide a reliable measure of error.
- **Full Vertical Coverage**: Provide leading edge enabling technologies through the entire technical application software stack: from problem construction, solution, analysis and optimization.

- **Grand Universal Interoperability**: All Trilinos packages will be interoperable, so that any combination of solver packages that makes sense algorithmically will be possible within Trilinos.
- **Universal Accessibility**: All Trilinos capabilities will be available to users of major computing environments: C++, Fortran, Python and the Web, and from the desktop to the latest scalable systems.
- **Universal Solver RAS**: Trilinos will be:
 - **Reliable**: Leading edge hardened, scalable solutions for each of these applications
 - **Available**: Integrated into every major application at Sandia
 - **Serviceable**: Easy to maintain and upgrade within the application environment.

Courtesy of Mike Heroux, Trilinos Project Leader
• Internal SNL Code for QASPR project
• Large-scale parallel (MPI)
• Unstructured grid finite elements
• Automatic Differentiation
• Adaptive Mesh Refinement
• Generalized operators – fast addition of new operators/equations
• Physics
 – Semiconductor Device
 – Multi-phase Aerosol
 – Reacting flows/gas-phase Combustion
 – MHD/Plasma
• Algorithms testing ground
Outline

- Overview of Trilinos and Charon

- Overview of vertical solver algorithm integration

- Moving beyond the forward solve
 - Challenges/barriers to embedded analysis methods
 - Enabling methods

- Examples of vertically integrated algorithms with Trilinos and Charon

- Steady-state parameter estimation optimization with MOOCHO/Charon
Trilinos Strategic Goals

• **Scalable Computations**: As problem size and processor counts increase, the cost of the computation will remain nearly fixed.

• **Hardened Computations**: Never fail unless problem essentially intractable, in which case we diagnose and inform the user why the problem fails and provide a reliable measure of error.

• **Full Vertical Coverage**: Provide leading edge enabling technologies through the entire technical application software stack: from problem construction, solution, analysis and optimization.

• **Grand Universal Interoperability**: All Trilinos packages will be interoperable, so that any combination of solver packages that makes sense algorithmically will be possible within Trilinos.

• **Universal Accessibility**: All Trilinos capabilities will be available to users of major computing environments: C++, Fortran, Python and the Web, and from the desktop to the latest scalable systems.

• **Universal Solver RAS**: Trilinos will be:
 - **Reliable**: Leading edge hardened, scalable solutions for each of these applications
 - **Available**: Integrated into every major application at Sandia
 - **Serviceable**: Easy to maintain and upgrade within the application environment.

Courtesy of Mike Heroux, Trilinos Project Leader
Linear Problems: Given linear operator (matrix) \(A \in \mathbb{R}^{n \times n} \)
- Linear equations: Solve \(Ax = b \) for \(x \in \mathbb{R}^n \)
- Eigen problems: Solve \(Av = \lambda v \) for (all) \(v \in \mathbb{R}^n \) and \(\lambda \in \mathbb{R} \)

Nonlinear Problems: Given nonlinear operator \(f(x, p) \in \mathbb{R}^{n+m} \rightarrow \mathbb{R}^n \)
- Nonlinear equations: Solve \(f(x) = 0 \) for \(x \in \mathbb{R}^n \)
- Stability analysis: For \(f(x, p) = 0 \) find space \(p \in P \) such that \(\frac{\partial f}{\partial x} \) is singular

Transient Nonlinear Problems:
- DAEs/ODEs: Solve \(f(\dot{x}(t), x(t), t) = 0, t \in [0, T], x(0) = x_0, \dot{x}(0) = x_0' \)
 for \(x(t) \in \mathbb{R}^n, t \in [0, T] \)

Optimization Problems:
- Unconstrained: Find \(p \in \mathbb{R}^m \) that minimizes \(g(p) \)
- Constrained: Find \(x \in \mathbb{R}^n \) and \(p \in \mathbb{R}^m \) that:
 minimizes \(g(x, p) \)
 such that \(f(x, p) = 0 \)
Vertical Integration and Interoperability is Important

Example: Numerous interactions exist between layers of abstract numerical algorithms (ANAs) in a transient optimization problem.

What is needed to solve problem?
• Standard interfaces to break $O(N^2)$ 1-to-1 couplings

Thyra is being developed to address interoperability of ANAs by defining interfaces for:
- Linear operators/vectors
- Preconditioners / Linear solvers
- Nonlinear models
- Nonlinear solvers
- Transient solvers

Key Points
• Higher level algorithms, like optimization, require a lot of interoperability
• Interoperability and vertical integration must be “easy” or these configurations will not be achieved in practice
Outline

- Overview of Trilinos and Charon

- Overview of vertical solver algorithm integration

- Moving beyond the forward solve
 - Challenges/barriers to embedded analysis methods
 - Enabling methods

- Examples of vertically integrated algorithms with Trilinos and Charon

- Steady-state parameter estimation optimization with MOOCHO/Charon
Embedded Analysis Algorithms and “The Cutting Edge”

- **Forward Simulator** (linear solvers, preconditioners, …)
- **Sensitivities and Error-Estimation**
- **Optimization (Opt)**
- **UQ**
- **Opt and UQ**

Complexity/Fidelity of Simulation (% of “cutting edge”)

- **The “Cutting Edge” for the Forward Simulation Application**
 - Drives capability computing (e.g., Gordan Bell, etc.)
 - Drives (i.e., “Pulls”) R&D for linear solvers, preconditioners, …

- **Advanced Analysis Methods**
 - Lag behind the “cutting edge” of the forward simulation
 - R&D reduces the lag!
 - Less direct impact on the forward simulation results => Leads to “Push” instead of “Pull”
 - Requires a different approach w.r.t. working with APP developers and customers!
We are now addressing these barriers in a fundamental way to provide the foundation for sustained embedded algorithms R&D.
Key Points

- Provide single interface from nonlinear ANAs to applications
- Provides for shared, uniform access to linear solver capabilities
- Once an application implements support for one ANA, support for other ANAs can be added incrementally
<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonlinear equations:</td>
<td>Solve $f(x) = 0$ for $x \in \mathbb{R}^n$</td>
</tr>
<tr>
<td>Stability analysis:</td>
<td>For $f(x, p) = 0$ find space $p \in P$ such that $\frac{\partial f}{\partial x}$ is singular</td>
</tr>
<tr>
<td>Explicit ODEs:</td>
<td>Solve $\dot{x} = f(x, t) = 0$, $t \in [0, T]$, $x(0) = x_0$, for $x(t) \in \mathbb{R}^n$, $t \in [0, T]$</td>
</tr>
<tr>
<td>DAEs/Implicit ODEs:</td>
<td>Solve $f(\dot{x}(t), x(t), t) = 0$, $t \in [0, T]$, $x(0) = x_0$, $\dot{x}(0) = x'_0$, for $x(t) \in \mathbb{R}^n$, $t \in [0, T]$</td>
</tr>
<tr>
<td>Explicit ODE Forward Sensitivities:</td>
<td>Find $\frac{\partial x}{\partial p}(t)$ such that: $\dot{x} = f(x, p, t) = 0$, $t \in [0, T]$, $x(0) = x_0$, for $x(t) \in \mathbb{R}^n$, $t \in [0, T]$</td>
</tr>
<tr>
<td>DAE/Implicit ODE Forward Sensitivities:</td>
<td>Find $\frac{\partial x}{\partial p}(t)$ such that: $f(\dot{x}(t), x(t), p, t) = 0$, $t \in [0, T]$, $x(0) = x_0$, $\dot{x}(0) = x'_0$, for $x(t) \in \mathbb{R}^n$, $t \in [0, T]$</td>
</tr>
<tr>
<td>Unconstrained Optimization:</td>
<td>Find $p \in \mathbb{R}^m$ that minimizes $g(p)$</td>
</tr>
<tr>
<td>Constrained Optimization:</td>
<td>Find $x \in \mathbb{R}^n$ and $p \in \mathbb{R}^m$ that:</td>
</tr>
<tr>
<td></td>
<td>minimizes $g(x, p)$</td>
</tr>
<tr>
<td></td>
<td>such that $f(x, p) = 0$</td>
</tr>
<tr>
<td>ODE Constrained Optimization:</td>
<td>Find $x(t) \in \mathbb{R}^n$ in $t \in [0, T]$ and $p \in \mathbb{R}^m$ that:</td>
</tr>
<tr>
<td></td>
<td>minimizes $\int_0^T g(x(t), p)$</td>
</tr>
<tr>
<td></td>
<td>such that $\dot{x} = f(x(t), p, t) = 0$, on $t \in [0, T]$</td>
</tr>
<tr>
<td></td>
<td>where $x(0) = x_0$</td>
</tr>
</tbody>
</table>
• The Idea:
 – Keep the development versions of APP and Trilinos code updated and tested daily
 – Automated daily integrations tests

 => Results in better production capabilities and better research

• Charon + Trilinos Dev
 – Development versions of Charon and Trilinos are kept up-to-date every day!
 – New embedded optimization and sensitivity capabilities are run and tested every day!

• Aria/SIERRA + Trilinos Dev
 – We have automated configuration and daily integration testing of Aria/SIERRA VOTD against Trilinos Dev working!
 – Now, we are addressing Aria/SIERRA software infrastructure issues and will start adding new embedded Trilinos analysis algorithms!

Outline

- Overview of Trilinos and Charon

- Overview of vertical solver algorithm integration

- Moving beyond the forward solve
 - Challenges/barriers to embedded analysis methods
 - Enabling methods

- Examples of vertically integrated algorithms with Trilinos and Charon

- Steady-state parameter estimation optimization with MOOCHO/Charon
Vertical Integrations of Trilinos Capabilities: Example 1

See Andy Salinger’s Talk at 11:00 AM

Trilinos Capabilities

- Analysis Tools *(embedded)*
 - Nonlinear Solver
 - Time Integration
 - Continuation
 - Sensitivity Analysis
 - Stability Analysis
 - Constrained Solves
 - Optimization

- Linear Algebra
 - Data Structures
 - Iterative Solvers
 - Direct Solvers
 - Eigen Solver
 - Preconditioners
 - Matrix Partitioning

- Derivative Tools
 - Derivatives
 - Sensitivities

Parameter 1 (0) absolute sensitivities
Integrated vs. finite diff (1e-2)

Transient sensitivity analysis of a 2n2222 BJT in Charon with AD+Rythmos: 14x faster than FD

See Eric Phipp’s Talk at 10:30 AM
Vertical Integrations of Trilinos Capabilities: Example 2

Trilinos Capabilities

- **Analysis Tools (embedded)**
 - Nonlinear Solver
 - Time Integration
 - Continuation
 - Sensitivity Analysis
 - Stability Analysis
 - Constrained Solves
 - Optimization

- **Linear Algebra**
 - Data Structures
 - Iterative Solvers
 - Direct Solvers
 - Eigen Solver
 - Preconditioners
 - Matrix Partitioning

- **Derivative Tools**
 - Derivatives
 - Sensitivities

Destabilizing eigen-vector for heated fluid in magnetic field

See Roger Pawlowski’s Talk at 11:30 AM
Vertical Integrations of Trilinos Capabilities: Example 3

Trilinos Capabilities

- Analysis Tools (embedded)
 - Nonlinear Solver
 - Time Integration
 - Continuation
 - Sensitivity Analysis
 - Stability Analysis
 - Constrained Solves
 - Optimization

- Linear Algebra
 - Data Structures
 - Iterative Solvers
 - Direct Solvers
 - Eigen Solver
 - Preconditioners
 - Matrix Partitioning

- Derivative Tools
 - Derivatives
 - Sensitivities

\[
\begin{align*}
\text{minimize} & \quad \frac{1}{2} \| g(x, p) - g^* \|_2^2 + \frac{1}{2} \beta \| p \|_2^2 \\
\text{subject to} & \quad f(x, p) = 0
\end{align*}
\]

Steady-State Parameter Estimation Problem using 2n2222 BJT in Charon MOOCHO + AD

I am talking about this next
Outline

- Overview of Trilinos and Charon
- Overview of vertical solver algorithm integration
- Moving beyond the forward solve
 - Challenges/barriers to embedded analysis methods
 - Enabling methods
- Examples of vertically integrated algorithms with Trilinos and Charon
- Steady-state parameter estimation optimization with MOOCHO/Charon
QASPR
Qualification of electronic devices in hostile environments

Stockpile BJT

PDE semiconductor device simulation

Defect reactions
Si interstitial (I) (+2,+1,0,–1,–2)
Vacancy (V) (+2,+1,0,–1,–2)
VV (+1,0,–1,–2)
BI (+,0,–)
CI (+,0,–)
VP (0,–)
VB (+,0)
VO (0,–)
BIB (0,–)
BIO (+,0)

Annihilation

Graph showing base current vs. time with annotations:
No irradiation: $I_B = 0.05 \mu A$
Experiment
Defect annealing

Graph with data points and trend lines.
Minimize Current model vs. target mismatch
Subject to: Steady-state semiconductor defect physic FE model

\[
\begin{align*}
\text{minimize} & \quad \frac{1}{2}\|g(x, p) - g^*\|_2^2 + \frac{1}{2}\beta\|p\|_2^2 \\
\text{subject to} & \quad f(x, p) = 0
\end{align*}
\]

- Solved current matching optimization problems to calibrate model parameters against target currents
- MOOCHO (Bartlett) optimization solver converges simulation model and optimality at same time
 - Faster and more robust than black-box optimization methods
 - More accurate solutions

- **Successes**
 - Very accurate inversion of currents and model parameters for contrived "inverse" problems

- **Challenges**
 - Extremely difficult nonlinear solver convergences on model convergence
 => Opportunities for algorithm research
 - Inability to match experimental data
 => May indicate incomplete FE model
Summary of Trilinos Vertical Integration Project (Milestone)

• **Goal:** Vertically integrate Trilinos solver algorithms in Trilinos to build new predictive embedded analysis capabilities
 • **Impact:** Vertically integrated 10+ Trilinos algorithm packages
• **Goal:** Demonstrate on relevant production applications
 • **Impact:** Solved steady-state parameter estimation problems and transient sensitivities on semiconductor devices in Charon
 • **Impact:** Solved Eigen problems on MHD problem in Charon
• **Added Goal:** Explore refined models of collaboration between production application developers and algorithm researchers.
 • **Impact:** Closer collaboration between application and algorithm developers yielding better algo and app R&D

MS17

A Case Study on the Vertical Integration of Trilinos Solver Algorithms with a Production Application Code

Organizer: Roscoe A. Bartlett

Sandia National Laboratories

10:00-10:25 Overview of the Vertical Integration of Trilinos Solver Algorithms in a Production Application Code

Roscoe A. Bartlett, Sandia National Laboratories

10:30-10:55 Analytic Sensitivities in Large-scale Production Applications via Automatic Differentiation with Sacado

Eric Phipps, Sandia National Laboratories

11:00-11:25 To PDE Components and Beyond

Andy Salinger, Sandia National Laboratories

11:30-11:55 Analysis Tools for Large-scale Simulation with Application to the Stationary Magnetohydrodynamics Equations

Roger Pawlowski, Eric Phipps, Heidi K. Thornquist, and Roscoe A. Bartlett, Sandia National Laboratories