

MS17

A Case Study on the Vertical Integration of Trilinos Solver Algorithms with a Production Application Code

Organizer: Roscoe A. Bartlett

Sandia National Laboratories

10:00-10:25 Overview of the Vertical Integration of Trilinos Solver Algorithms in a Production Application Code

Roscoe A. Bartlett, Sandia National Laboratories

10:30-10:55 Analytic Sensitivities in Large-scale Production Applications via Automatic Differentiation with Sacado

Eric Phipps, Sandia National Laboratories

11:00-11:25 To PDE Components and Beyond

Andy Salinger, Sandia National Laboratories

Replacement

11:30-11:55 Analysis Tools for Large-scale Simulation with Application to the Stationary Magnetohydrodynamics Equations

Roger Pawlowski, Eric Phipps, Heidi K. Thornquist, and Roscoe A. Bartlett, Sandia National Laboratories

Overview of the Vertical Integration of Trilinos Solver Algorithms in a Production Application Code

Roscoe A. Bartlett
Department of Optimization & Uncertainty Estimation

http://www.cs.sandia.gov/~rabartl

Sandia National Laboratories

March 13th, 2008

Overview of Trilinos Vertical Integration Project (Milestone)

- Goal: Vertically integrate Trilinos solver algorithms in Trilinos to build new predictive embedded analysis capabilities
 - Impact: Vertically integrated 10+ Trilinos algorithm packages
- Goal: Demonstrate on relevant production applications
 - Impact: Solved steady-state parameter estimation problems and transient sensitivities on semiconductor devices in Charon
 - Impact: Solved Eigen problems on MHD problem in Charon
- Added Goal: Explore refined models of collaboration between production application developers and algorithm researchers.
 - Impact: Closer collaboration between application and algorithm developers yielding better algo and app R&D

Bartlett, Roscoe, Scott Collis, Todd Coffey, David Day, Mike Heroux, Rob Hoekstra, Russell Hooper, Roger Pawlowski, Eric Phipps, Denis Ridzal, Andy Salinger, Heidi Thornquist, and Jim Willenbring. *ASC Vertical Integration Milestone*. SAND2007-5839, Sandia National Laboratories, 2007

[http://www.cs.sandia.gov/~rabartl/publications.html]

- Overview of Trilinos and Charon
- Overview of vertical solver algorithm integration
- Moving beyond the forward solve
 - ⇒ Challenges/barriers to embedded analysis methods
 - \Rightarrow Enabling methods
- Examples of vertically integrated algorithms with Trilinos and Charon
- Steady-state parameter estimation optimization with MOOCHO/Charon

- Overview of Trilinos and Charon
- Overview of vertical solver algorithm integration
- Moving beyond the forward solve
 - ⇒ Challenges/barriers to embedded analysis methods
 - \Rightarrow Enabling methods
- Examples of vertically integrated algorithms with Trilinos and Charon
- Steady-state parameter estimation optimization with MOOCHO/Charon

Overview of Trilinos

- Provides a suite of numerical solvers to support predictive simulation for Sandia's customers
 - => Scope has expended to include discretizations methods, ...!
- Provides a decoupled and scalable development environment to allow for algorithmic research and production capabilities => "Packages"
- Provides support for growing SQA requirements
- Mostly C++ with some C, Fortran, Python ...
- Advanced object-oriented and generic C++ ...

Current Status

- Current release: Trilinos 8.0.x (September 2007)
- Next release Trilinos 9.0 (September 2008)

Trilinos website

http://trilinos.sandia.gov

Trilinos (8.0 & 9.0+) Package Summary

	Objective	Package(s)
Discretizations	Meshing & Spatial Discretizations	phdMesh, Intrepid
Methods	Automatic Differentiation and UQ Prop.	Sacado, Stokos
	Mortar Methods	Moertel
	Linear algebra objects	Epetra, Jpetra, Tpetra
Core	Abstract interfaces	Thyra, Stratimikos, RTOp
	Load Balancing	Zoltan, Isorropia
	"Skins"	PyTrilinos, WebTrilinos, Star-P, ForTrilinos, CTrilinos
	C++ utilities, (some) I/O	Teuchos, EpetraExt, Kokkos, Triutils
Solvers	Iterative (Krylov) linear solvers	AztecOO, Belos, Komplex
	Direct sparse linear solvers	Amesos
	Direct dense linear solvers	Epetra, Teuchos, Pliris
	Iterative eigenvalue solvers	Anasazi
	ILU-type preconditioners	AztecOO, IFPACK
	Multilevel preconditioners	ML, CLAPS
	Block preconditioners	Meros
	Nonlinear system solvers	NOX, LOCA
	Time Integration & Sensitivities	Rythmos
Analysis	Optimization (SAND)	MOOCHO, Aristos

Green: Packages used in Vertical Integration Milestone

Gray: New packages that will be included in Trilinos 9.0 (September 2008) or later

Trilinos Strategic Goals

- Scalable Computations: As problem size and processor counts increase, the cost of the computation will remain nearly fixed.
- Hardened Computations: Never fail unless problem essentially intractable, in which case we diagnose and inform the user why the problem fails and provide a reliable measure of error.
- Full Vertical Coverage: Provide leading edge enabling technologies through the entire technical application software stack: from problem construction, solution, analysis and optimization.

Algorithmic Goals

- *Grand* Universal Interoperability: All Trilinos packages will be interoperable, so that any combination of solver packages that makes sense algorithmically will be possible within Trilinos.
- Universal Accessibility: All Trilinos capabilities will be available to users of major computing environments: C++, Fortran, Python and the Web, and from the desktop to the latest scalable systems.
- Universal Solver RAS: Trilinos will be:
 - Reliable: Leading edge hardened, scalable solutions for each of these applications
 - Available: Integrated into every major application at Sandia
 - Serviceable: Easy to maintain and upgrade within the application environment.

Courtesy of Mike Heroux, Trilinos Project Leader

Software Goals

(Generalized PDE Solver)

- Internal SNL Code for QASPR project
- Large-scale parallel (MPI)
- Unstructured grid finite elements
- Automatic Differentiation
- Adaptive Mesh Refinement
- Generalized operators fast addition of new operators/equations
- Physics
 - Semiconductor Device
 - Multi-phase Aerosol
 - Reacting flows/gasphase Combustion
 - MHD/Plasma
- Algorithms testing ground

- Overview of Trilinos and Charon
- Overview of vertical solver algorithm integration
- Moving beyond the forward solve
 - ⇒ Challenges/barriers to embedded analysis methods
 - \Rightarrow Enabling methods
- Examples of vertically integrated algorithms with Trilinos and Charon
- Steady-state parameter estimation optimization with MOOCHO/Charon

Trilinos Strategic Goals

- Scalable Computations: As problem size and processor counts increase, the cost of the computation will remain nearly fixed.
- Hardened Computations: Never fail unless problem essentially intractable, in which case we diagnose and inform the user why the problem fails and provide a reliable measure of error.
- Full Vertical Coverage: Provide leading edge enabling technologies through the entire technical application software stack: from problem construction, solution, analysis and optimization.

Algorithmic Goals

- **Grand Universal Interoperability**: All Trilinos packages will be interoperable, so that any combination of solver packages that makes sense algorithmically will be possible within Trilinos.
- Universal Accessibility: All Trilinos capabilities will be available to users of major computing environments: C++, Fortran, Python and the Web, and from the desktop to the latest scalable systems.
- Universal Solver RAS: Trilinos will be:
 - Reliable: Leading edge hardened, scalable solutions for each of these applications
 - Available: Integrated into every major application at Sandia
 - Serviceable: Easy to maintain and upgrade within the application environment.

Courtesy of Mike Heroux, Trilinos Project Leader

Thyra is being developed to address this issue

Software Goals

Embedded Analysis Algorithms

Packages/Algorithms Most Directly to Vertical Integration Project

Trilinos Packages

Belos

NOX

LOCA

Rythmos

□ Linear Problems: Given linear operator (matrix) $A \in \mathbb{R}^{n \times n}$

□ Linear equations: Solve Ax = b for $x \in \mathbb{R}^n$

oxdot Eigen problems: Solve $Av=\lambda v$ for (all) $v\in {f R}^n$ and $\lambda\in {f R}$ Anasazi

□ Nonlinear Problems: Given nonlinear operator $f(x, p) \in \mathbb{R}^{n+m} \to \mathbb{R}^n$

□ Nonlinear equations: Solve f(x) = 0 for $x \in \mathbb{R}^n$

Stability analysis: For f(x,p)=0 find space $p\in\mathcal{P}$ such that $\frac{\partial f}{\partial x}$ is singular

Transient Nonlinear Problems:

DAES/ODES Solve $f(\dot{x}(t), x(t), t) = 0, t \in [0, T], x(0) = x_0, \dot{x}(0) = x_0'$

ode/DAE Sensitivities ... for $x(t) \in \mathbb{R}^n, t \in [0, T]$

Optimization Problems:

Unconstrained: Find $p \in \mathbb{R}^m$ that minimizes g(p)

Constrained: Find $x \in \mathbb{R}^n$ and $p \in \mathbb{R}^m$ that:

minimizes g(x, p)such that f(x, p) = 0 **MOOCHO**

Vertical Integration and Interoperability is Important

Example: Numerous interactions exist between layers of abstract numerical algorithms (ANAs) in a transient optimization problem

What is needed to solve problem?

 Standard interfaces to break $O(N^2)$ 1-to-1 couplings

Thyra is being developed to address interoperability of ANAs by defining interfaces for:

- Linear operators/vectors
- Preconditioners / Linear solvers

Key Points

- Higher level algorithms, like optimization, require a lot of interoperability
- Interoperability and vertical integration must be "easy" or these configurations will not be achieved in practice

- Overview of Trilinos and Charon
- Overview of vertical solver algorithm integration
- Moving beyond the forward solve
 - ⇒ Challenges/barriers to embedded analysis methods
 - \Rightarrow Enabling methods
- Examples of vertically integrated algorithms with Trilinos and Charon
- Steady-state parameter estimation optimization with MOOCHO/Charon

Embedded Analysis Algorithms and "The Cutting Edge"

- The "Cutting Edge" for the Forward Simulation Application
 - Drives capability computing (e.g., Gordan Bell, etc.)
 - Drives (i.e., "Pulls") R&D for linear solvers, preconditioners, ...
- Advanced Analysis Methods
 - Lag behind the "cutting edge" of the forward simulation
 - R&D reduces the lag!
 - Less direct impact on the forward simulation results => Leads to "Push" instead of "Pull"
 - Requires a different approach w.r.t. working with APP developers and customers!

Challenges/Barriers to Embedded Analysis Algorithms

Version Control, Build, Test (incompatible dev sources, environments, tools, lack of testing, ...) APP + Trilinos Dev (Bartlett et. al.) Software Infrastructure (narrow forward solvers, inflexible implementation approaches, ...) Thyra ModelEvaluator (Bartlett et. al.) **Derivatives** (smoothness, accuracy, parameter derivatives, ...) AD/Sacado (Phipps and Gay) Fleeting effort #2 **Embedded Algorithms R&D** APP + Trilinos Dev (Bartlett et.al.) with Production APPs Thyra ModelEvaluator (Bartlett et.al.) Better Algorithms R&D AD/Sacado (Phipps et.al.)

We are now addressing these barriers in a fundamental way to provide the foundation for sustained embedded algorithms R&D

Better Production APPs

Nonlinear Algorithms and Applications: Thyra & Model Evaluator!

Key Points

- Provide single interface from nonlinear ANAs to applications
- Provides for shared, uniform access to linear solver capabilities
- Once an application implements support for one ANA, support for other ANAs can be added incrementally

Some Nonlinear Problems Supported by the ModelEvaluator

Nonlinear equations:	Solve $f(x) = 0$ for $x \in \mathbb{R}^n$
Stability analysis:	For $f(x,p)=0$ find space $p\in\mathcal{P}$ such that $\frac{\partial f}{\partial x}$ is singular
Explicit ODEs:	Solve $\dot{x} = f(x,t) = 0, t \in [0,T], \ x(0) = x_0,$ for $x(t) \in \mathbf{R}^n, t \in [0,T]$
DAEs/Implicit ODEs:	Solve $f(\dot{x}(t), x(t), t) = 0, t \in [0, T], x(0) = x_0, \dot{x}(0) = x_0'$ for $x(t) \in \mathbf{R}^n, t \in [0, T]$
Explicit ODE Forward Sensitivities:	Find $\frac{\partial x}{\partial p}(t)$ such that: $\dot{x}=f(x,p,t)=0,t\in[0,T],$ $x(0)=x_0$, for $x(t)\in\mathbf{R}^n,t\in[0,T]$
DAE/Implicit ODE Forward Sensitivities:	Find $\frac{\partial x}{\partial p}(t)$ such that: $f(\dot{x}(t), x(t), p, t) = 0, t \in [0, T],$ $x(0) = x_0, \ \dot{x}(0) = x_0', \ \text{for } x(t) \in \mathbf{R}^n, t \in [0, T]$
Unconstrained Optimization:	Find $p \in \mathbf{R}^m$ that minimizes $g(p)$
Constrained Optimization:	Find $x \in \mathbf{R}^n$ and $p \in \mathbf{R}^m$ that: minimizes $g(x,p)$ such that $f(x,p)=0$
ODE Constrained Optimization:	Find $x(t) \in \mathbf{R}^n$ in $t \in [0,T]$ and $p \in \mathbf{R}^m$ that: minimizes $\int_0^T g(x(t),p)$ such that $\dot{x}=f(x(t),p,t)=0$, on $t \in [0,T]$ where $x(0)=x_0$

APP + Trilinos Dev: Algorithms and Applications Integration

- The Idea:
 - Keep the development versions of APP and Trilinos code updated and tested daily
 - Automated daily integrations tests
 - =>Results in better production capabilities and better research
- Charon + Trilinos Dev
 - Development versions of Charon and Trilinos are kept up-to-date every day!
 - New embedded optimization and sensitivity capabilities are run and tested every day!
- Aria/SIERRA + Trilinos Dev
 - We have automated configuration and daily integration testing of Aria/SIERRA VOTD against Trilinos Dev working!
 - Now, we are addressing Aria/SIERRA software infrastructure issues and will start adding new embedded Trilinos analysis algorithms!

Bartlett, Roscoe. *Daily Integration and Testing of the Development Versions of Applications and Trilinos: A stronger foundation for enhanced collaboration in application and algorithm research and development*, SAND2007-7040, Sandia National Laboratories, October 2007

[http://www.cs.sandia.gov/~rabartl/publications.html]

- Overview of Trilinos and Charon
- Overview of vertical solver algorithm integration
- Moving beyond the forward solve
 - ⇒ Challenges/barriers to embedded analysis methods
 - \Rightarrow Enabling methods
- Examples of vertically integrated algorithms with Trilinos and Charon
- Steady-state parameter estimation optimization with MOOCHO/Charon

Vertical Integrations of Trilinos Capabilities: Example 1

See Andy Salinger's Talk at 11:00 AM

Trilinos Capabilities

Transient sensitivity analysis of a 2n2222 BJT in Charon *w/AD+Rythmos: 14x faster than FD*

See Eric Phipp's Talk at 10:30 AM

Vertical Integrations of Trilinos Capabilities: Example 2

Trilinos Capabilities

Vertical Integrations of Trilinos Capabilities: Example 3

Trilinos Capabilities

minimize $\sqrt[4]{|g(x,p)-g^*|}^2 + \sqrt[4]{\beta}||p||^2$ subject to f(x,p)=0

Steady-Sate Parameter Estimation Problem using 2n2222 BJT in Charon *MOOCHO + AD*

I am talking about this next

- Overview of Trilinos and Charon
- Overview of vertical solver algorithm integration
- Moving beyond the forward solve
 - ⇒ Challenges/barriers to embedded analysis methods
 - \Rightarrow Enabling methods
- Examples of vertically integrated algorithms with Trilinos and Charon
- Steady-state parameter estimation optimization with MOOCHO/Charon

QASPR

Qualification of electronic devices in hostile environments

PDE semiconductor device simulation

Steady-State Parameter Estimation with Charon/MOOCHO

Minimize Current model vs. target mismatch

Subject to: Steady-state semiconductor

defect physic FE model

minimize $\sqrt[4]{2}||g(x,p)-g^*||_2^2+\sqrt[4]{2}\beta||p||_2^2$ subject to f(x,p)=0

- Solved current matching optimization problems to calibrate model parameters against target currents
- MOOCHO (Bartlett) optimization solver converges simulation model and optimality at same time
 - Faster and more robust than black-box optimization methods
 - More accurate solutions

Successes

 Very accurate inversion of currents and model parameters for contrived "inverse" problems

Challenges

- Extremely difficult nonlinear solver convergences on model convergence
 - => Opportunities for algorithm research
- Inability to match experimental data
 - => May indicate incomplete FE model

Summary of Trilinos Vertical Integration Project (Milestone)

- Goal: Vertically integrate Trilinos solver algorithms in Trilinos to build new predictive embedded analysis capabilities
 - Impact: Vertically integrated 10+ Trilinos algorithm packages
- Goal: Demonstrate on relevant production applications
 - Impact: Solved steady-state parameter estimation problems and transient sensitivities on semiconductor devices in Charon
 - Impact: Solved Eigen problems on MHD problem in Charon
- Added Goal: Explore refined models of collaboration between production application developers and algorithm researchers.
 - Impact: Closer collaboration between application and algorithm developers yielding better algo and app R&D

Bartlett, Roscoe, Scott Collis, Todd Coffey, David Day, Mike Heroux, Rob Hoekstra, Russell Hooper, Roger Pawlowski, Eric Phipps, Denis Ridzal, Andy Salinger, Heidi Thornquist, and Jim Willenbring. *ASC Vertical Integration Milestone*. SAND2007-5839, Sandia National Laboratories, 2007

[http://www.cs.sandia.gov/~rabartl/publications.html]

MS17

A Case Study on the Vertical Integration of Trilinos Solver Algorithms with a Production Application Code

Organizer: Roscoe A. Bartlett

Sandia National Laboratories

10:00-10:25 Overview of the Vertical Integration of Trilinos Solver Algorithms in a Production Application Code

Roscoe A. Bartlett, Sandia National Laboratories

10:30-10:55 Analytic Sensitivities in Large-scale Production Applications via Automatic Differentiation with Sacado

Eric Phipps, Sandia National Laboratories

11:00-11:25 To PDE Components and Beyond

Andy Salinger, Sandia National Laboratories

Replacement

11:30-11:55 Analysis Tools for Large-scale Simulation with Application to the Stationary Magnetohydrodynamics Equations

Roger Pawlowski, Eric Phipps, Heidi K. Thornquist, and Roscoe A. Bartlett, Sandia National Laboratories

