
Page 1

Software Life-cycle and Integration

Issues for CS&E R&D Software and

Experiences from Trilinos

(Part II, Integration Issues)

Roscoe A. Bartlett

http://www.cs.sandia.gov/~rabartl/

Department of Optimization & Uncertainty Estimation

Trilinos Software Engineering Technologies and Integration Lead

Sandia National Laboratories

SIAM Parallel Processing 2010, 2/24/2010

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,

for the United States Department of Energy under contract DE-AC04-94AL85000.

2010-1844 C

Vision for a Confederation of CS&E Software

Page 3

Overview of CS&E Software Engineering Challenge

• Progress in Computational Science and Engineering (CS&E) is occurring due

to greater numbers of more complex algorithms and methods

– Discretization: a) meshing, b) advanced discretizations, c) adaptively, …

– Parallelization: a) parallel support, b) load balancing, …

– General numerics: a) automatic differentiation, …

– Solvers: a) linear-algebra, b) linear solvers, c) preconditioners, d) nonlinear solvers,

e) time integration, …

– Analysis capabilities: a) error-estimation, b) stability analysis and bifurcation, c)

optimization, d) UQ, …

– New architectures: a) multi-core, b) GPUs, …

– Visualization

– ...

• Each technology requires specialized PhD-level expertise

• Almost all technologies need to be integrated into single applications

• Set of algorithms/software is too large for any single organization to create

• Too large to be developed under single blanket of Continuous Integration (CI)

Software Engineering and Software Integration are key bottlenecks for CS&E to

have the fullest impact!

Page 4

The Vision: A Confederation of CS&E Codes?

• Develop a confederation of trusted, high-quality, reusable, compatible,

software packages/components including capabilities for:

– Discretization: a) meshing, b) advanced discretizations, c) adaptively, …

– Parallelization: a) parallel support, b) load balancing, …

– General numerics: a) automatic differentiation, …

– Solvers: a) linear-algebra, b) linear solvers, c) preconditioners, d) nonlinear

solvers, e) time integration, …

– Analysis capabilities: a) error-estimation, b) stability analysis and bifurcation, c)

optimization, d) UQ, …

– New architectures: a) multi-core, b) GPUs, …

– Visualization

– ...

CS&E Confederation

Pkg B ...

... Pkg Y Pkg Z

Pkg A Pkg C

Pkg X

APP1

Pkg BPkg A

APP2

Pkg BPkg A Pkg C

Pkg YPkg XTrilinos itself is a smaller example of this!

Requirements/Challenges for Confederation of CS&E Codes

• Software quality and usability

=> Design, testing, collaborative development

• Building the software in a consistent way and linking

=> Common build approach?

• Reusability and interoperability of software components

=> Incremental Agile design

• Documentation, tutorials, user comprehension

=> SE education, better documentation and examples

• Critical new functionality development

=> Closer development and integration models

• Upgrading compatible versions of software

=> Frequent fixed-time releases

• Safe upgrades of software

=> Regulated backward compatibility, software quality

• Long term maintenance and support

= > Stable organizations, stable projects, stable staff

• Self-sustaining software (clean design, clean implementation, well tested

with unit tests and system verification tests) => Anyone can maintain it!

The Trilinos is taking (baby) steps to address all of these

issues at some level.

Software Integration Strategies

Page 7

CS&E Environment at Sandia National Labs for Trilinos

• Sophisticated CS&E applications

– Discretized PDEs (SIERRA, Alegra, Aleph, Charon)

– Circuit network models (Xyce)

– Other types of calculations (Titian/VTK, Tramonto)

• (Massively) parallel MPI (Gordon Bell Winners)

• Almost entirely developed by non-software people

• Wide range of research to production (i.e. from Aleph to SIERRA)

SIERRA (APP)

Largest and most

complex

Alegra (APP)
Charon

(APP)

Xyce

(APP)

Tramonto

(APP)

Titan/VTK

(APP)

...
Aleph

(APP)

Trilinos (TPL)

TPL: Third Party Lib

• Provides

functionality to

multiple APPs

• The “Supplier” to

the APP

APP: Application

• Delivers end user

functionality

• The “Customer” of

the TPL

Page 8

Standard Software Integration Approaches

APP (Customer)

Developers

TPL (Supplier)

Developers

Helps to create

and maintain

develops

• Helps to create

• Runs as a regression

test suite

develops

APP
TPL

• Continuous Integration (CI)

– Code is expected to build and the tests are expected to run

– Maintained through synchronous or asynchronous CI

– Requires high levels of cooperation and communication

– Requires code to (re)build fast and tests to run fast

• Customer/Supplier Relationships

– Combined code too large to build under single CI system

– Organizations can not cooperate close enough

– Protect APP for future TPL updates through development of Acceptance Test Suite

– May not work as well for may CS&E codes

– Not as well suited for closer collaborations

APP/TPL

Acceptance Test

Suite

Page 9

Special Challenges with CS&E Software

• CS&E heavily relies on fast floating-point computations

– Output from program varies between platforms and even with different compiler

options!

– How to you keep tests working on different platforms?

• CS&E involves complex nonlinear models

– Examples: ill conditioning, multiple solutions, bifurcations, non-convexities ...

These issues conspire together to make testing and maintaining CS&E software

on multiple platforms very difficult!

Consequences:

• A new test status: The diffing test!

– Code runs to completion but some error tolerance was exceeded

– Many CS&E practitioners convince themselves that a “diff” is not as bad as a “fail”!

• Changes to a numerical algorithm that improve performance in every measure

can cause numerous tests to „diff‟ or even „fail‟!

• Upgrades of a TPL can break an APP even if no real defects have been

introduced!

Page 10

APP + TPL Release with Punctuated TPL Upgrades

TPL Head

APP Head

APP Y+1 & TPL X+1

release

Testing: APP Dev + TPL X APP Dev

transition

to TPL X+1

Testing:

APP Dev + TPL X+1

• Transition from TPL X to TPL X+1 can be difficult and open ended

• Large batches of changes between integrations

• Greater risk of experiencing real regressions

• Upgrades may need to be completely abandoned in extreme cases

• However, this is satisfactory for many APP+TPL efforts!

TPL X+1 release

Page 11

APP + TPL Release and Dev Daily Integration

APP Dev

TPL

(Trilinos)

Release

TPL

(Trilinos)

Dev

N
e
w

APP Dev

Developers
TPL (Trilinos) Dev

Developers
• APP Dev Developers only build/test against TPL Release

• TPL (Trilinos) Dev Developers work independent from APP

• Keep APP Dev and TPL Dev up to date! => Supported by TPL backward Compatibility!

• Use of staggered releases of TPL and APP

• APP + TPL Dev Co-Developers drive new capabilities

• Difficult for APP to depend too much on TPL

• Does not support tighter levels of integration and collaboration

• APP developers can break “New” a lot when refactoring

• However, this is satisfactory for many APP+TPL efforts!

APP Dev + TPL Dev

Co-Developers

Page 12

APP + TPL Release and Dev Daily Integration

TPL Head (Dev)

APP Head (Dev)

APP Y+1 & TPL X+1

release

Testing: APP Dev + TPL Dev

Testing: APP Dev + TPL X

Testing:

APP +

Tri Dev

Tri X

Tri X+1

• All changes are tested in small batches

• Low probability of experiencing a regression

• Extra computing resources to test against 2 (3) versions of TPL

• Some difficulty flagging regressions of APP + TPL Dev

• APP developers often break APP + TPL Dev when refactoring

• Difficult for APP to rely on TPL too much

• Hard to verify TPL for APP before APP release

• However, this is satisfactory for many APP+TPL efforts!

TPL X+1 release

Testing: APP Dev + TPL Dev

Testing: APP Dev + TPL X+1

Charon + Trilinos Integration!

Alegra + Trilinos Integration!

Xyce + Trilinos Integration!

Page 13

APP Owned

TPL Owned

APP + TPL Almost Continuous Integration: Overview

Main APP

VC Repository

(Dev)

APP-owned TPL

VC Repository

(Dev-)

APP Dev

Developers

TPL Dev

Developers

APP Pre-Checkin

Test Suite

APP Regression

Test Suite

TPL Regression

Test Suite

APP Dev

Nightly Testing

APP Dev + TPL Dev-

TPL Dev

Nightly Testing

Main TPL

VC Repository

(Dev)

TPL Pre-Checkin

Test Suite

APP Dev + TPL Dev

Co-Developers

APP Dev + TPL Dev

Page 14

APP + TPL Almost Continuous Integration: Releases

TPL Head (Dev)

APP Head (Dev)

APP Y+1 & TPL APP Y+1 release

Nightly Testing: APP Dev + TPL Dev (pre-checkin tests only, TPL Dev- checkin)

Nightly Testing: APP Dev + TPL Dev- (complete test suites)

Supported with asynchronous continuous integration testing of APP Dev + TPL Dev

TPL APP Y+1 release

• All changes are tested in small batches

• Low probability of experiencing a regression between major releases

• Less computing resources for detailed nightly testing (only one TPL version)

• All tested regressions are flagged in less than 24 hours

• Allows code to flow freely between the APP and TPL

• Supports rapid development of new capabilities from top to bottom

• All code checked out by APP Dev developers has passed pre-checkin build/test

• More complex processes (i.e. requires some tools?)

• APP Dev developers spend more time spent recompiling TPL code

• Recommended for projects requiring high levels of integration & collaboration!

SIERRA + Trilinos Integration!

Page 15

APP + TPL Integration: Different Collaboration Models

• Absorb sources for TPL and never upgrade

• Just a code seeding strategy and not an integration strategy

• APP + TPL Release with Punctuated TPL Upgrades

– Little to no testing of APP + TPL Dev in between versions

• APP + TPL Release and Dev Daily Integration

– APP developers work against TPL Release

– APP + TPL team(s) build against TPL Dev

– Nightly and CI testing done for both APP + TPL Release and Dev

– Must handled staggered releases of TPL and APP

• APP + TPL Almost Continuous Integration

– APP developers work directly against TPL Dev checked out every day

– Releases best handled as combined releases of APP and TPL

Page 16

Selecting an Integration Model for CS&E Software

• Each of these different integration models will be appropriate for a particular

APP+TPL situation.

• The particular integration model can be switched during the life-cycles of

the APP and TPL depending on several factors:

– Level of dependence on TPL?

– Level of duplication of functionality in TPL with other external packages?

– Level of sophistication of TPL?

– Ease or difficulty of independent verification of TPL?

– Level of active development of TPL?

– Need for new functionality and upgrades of TPL?

– Interdependence of TPL on other external software packages?

– Level of quality needed for TPL?

– Level of Software Quality Engineering used to produce TPL?

– Release schedule for TPL?

– Level of relationship and pull with the developers of TPL?

– Stability of the organization that develops and supports TPL?

– Usage of TPL by other related sister codes?

– ...

Page 17

Maintenance of APP + TPL Integration

Hard TPL #2

Issues

Hard TPL #1

Issues

APP Dev + TPL Dev Build/Test

or

APP Dev + TPL Dev-/Release Build/Test

TPL #1

Developers

TPL #2

Developers

APP + TPL

Monitors

TPL #1

Representatives

TPL #2

Representatives

All failures

TPL #1

Issues

APP

Representatives

APP Developers

APP

Issues

TPL #2

Issues

• APP + TPL Monitor:

– Member of the APP development team

– Has good familiarity with the TPLs

– Performs first-round triage (APP or TPL?)

– Forwards issues to APP or TPL Reps

– Ultimate responsibility to make sure issues

are resolved

• APP Representative:

– Member of the APP development team

– Second-round triage of APP issues

– Forwards hard APP issues to APP

developers

• TPL Representative:

– Member of the TPL development team

– Has some familiarity with the APPs

– Second-round triage for TPL issues

– Forwards hard TPL issues to TPL

developers

• General principles:

– Roles of authority and accountability

(Ordained by management)

– At least two people serve in each role

– Rotate people in roles

Hard APP

Issues

Summary

Page 19

CS&E Software Engineering Challenge

• Progress in Computational Science and Engineering (CS&E) is occurring due

to greater numbers of more complex algorithms and methods

– Discretization: a) meshing, b) advanced discretizations, c) adaptively, …

– Parallelization: a) parallel support, b) load balancing, …

– General numerics: a) automatic differentiation, …

– Solvers: a) linear-algebra, b) linear solvers, c) preconditioners, d) nonlinear solvers,

e) time integration, …

– Analysis capabilities: a) error-estimation, b) stability analysis and bifurcation, c)

optimization, d) UQ, …

– New architectures: a) multi-core, b) GPUs, …

– Visualization

– ...

• Each technology requires specialized PhD-level expertise

• Almost all technologies need to be integrated into single applications

• Set of algorithms/software is too large for any single organization to create

• Too large to be developed under single blanket of Continuous Integration (CI)

Software Engineering and Software Integration are key bottlenecks for CS&E to

have the fullest impact!

Page 20

Summary of CS&E Software Integration Models

• Nightly building and testing of the development versions of the application

and TPLs:

– results in better production capabilities and better research,

– brings TPL developers and APP developers closer together allowing for a better

exchange of ideas and concerns,

– refocuses TPL developers on customer efforts,

– helps drive continued research-quality TPL development, and

– reduces barriers for new TPL algorithms to have impact on production

applications.

• Integration Models:

– APP + TPL Release with Punctuated TPL Upgrades

• Little to no testing of APP + TPL Dev in between TPL releases

– APP + TPL Release and Dev Daily Integration

• Daily Integration testing done for both APP + TPL Release and Dev

• Staggered releases of TPL and APP

– APP + TPL Almost Continuous Integration

• APP Dev + TPL Dev developers update both APP-owned and main TPL repositories

• Nightly testing of APP Dev + TPL Dev automatically updates APP-owned TPL Dev- VC

Repository

• Releases best handled as combined releases of APP and TPL

• TPL Dev- checkins can be dialed back approaching TPL Release and Dev Integration!

Requirements/Challenges for Confederation of CS&E Codes

• Software quality and usability

=> Design, testing, collaborative development

• Building the software in a consistent way and linking

=> Common build approach?

• Reusability and interoperability of software components

=> Incremental Agile design

• Documentation, tutorials, user comprehension

=> SE education, better documentation and examples

• Critical new functionality development

=> Closer development and integration models

• Upgrading compatible versions of software

=> Frequent fixed-time releases

• Safe upgrades of software

=> Regulated backward compatibility, software quality

• Long term maintenance and support

= > Stable organizations, stable projects, stable staff

• Self-sustaining software (clean design, well tested with unit tests and system

verification tests) => Anyone can maintain it!

Possible topics for Round Table Discussion at 6:00 PM

THE END

