
P R E S E N T E D B Y

Sandia National Laboratories is a multimission

laboratory managed and operated by National

Technology & Engineering Solutions of Sandia,

LLC, a wholly owned subsidiary of Honeywell

International Inc., for the U.S. Department of

Energy’s National Nuclear Security

Administration under contract DE-NA0003525.

Development and Integration
Workflows for Large Complex
Distributed CSE Software
Efforts

Roscoe A. Bar t l e t t , Ph .D.

Dept . Sof tware Eng ineer ing & Resea rch

ht tps ://bar t l e t t roscoe.g i thub. io

SAND2019-2092 C

Overview of CASL

• CASL: Consortium for the Advanced Simulation of Lightwater reactors

• DOE Innovation Hub including DOE labs, universities, and industry partners

• Goals:

• Advance modeling and simulation of lightwater nuclear reactors

• Produce a set of simulation tools to model lightwater nuclear reactor cores

to provide to the nuclear industry: VERA: Virtual Environment for

Reactor Applications.

• Phase 1: July 2010 – June 2015

• Phase 2: July 2015 – June 2020

• Organization and management:

• ORNL is the hub of the Hub

• Milestone driven (6 month plan-of-records (PoRs))

• Focus areas: Physics Integration (PHI), Thermal Hydraulic Methods

(THM), Radiation Transport Methods (RTM), Advanced Modeling

Applications (AMA), Materials Performance and Optimization (MPO),

Validation and Uncertainty Quantification (VUQ)

2

Roscoe Bartlett was PHI software

engineering and integration lead

for CASL from 2010-2016.

CASL VERA Development & Integration Overview (≈2016)

• VERA development is complicated!

• VERA Currently Composed of:

• 21 different repositories on casl-dev.ornl.gov (some git clones of other repos) most

with a different access list (NDAs, Export Control, IP, etc.)

• Integrating development efforts from many teams from 9+ institutions

• Large single CMake build system using TriBITS CMake Framework:

• Very large full source code base:

• 55K source and script files

• 12M lines of code (not comments)

• 2,700 CMakeLists.txt files

• 229 packages + subpackages enabled (out of 496 total) ≈ 46% of full code base

• Most CMake developer reconfigures take place in less than 30 seconds!

• VERA Software Development Process:

• VERA integration maintained by continuous and nightly testing:

• Pre-push CI testing: checkin-test-vera.sh, cloned VERA git repos

• Post-push CI testing: CTest/CDash, all VERA git repos

• Nightly testing: MPI and Serial builds, Debug and Release builds, …

• Maintain 100% passing builds and tests most days!

• Many internal and external repository integrations on daily basis

• VERA releases are taken off of stable ‘master’ branches on casl-dev git repos.

• Low maintenance cost of the infrastructure

3

(Selected) CASL VERA Git Repositories (≈2015)

Trilinos

(SNL)

TeuchosWrappersExt

(Multi Inst.)

VERAInExt

(Multi Inst.)

COBRA-TF

(PennState) MPACT

(U.Mich.)

SCALE (ORNL)

VUQDemos

(SNL)

MOOSEExt

MOOSE /

Bison (INL)

DatraTransferKit

(ORNL)

Exnihilo

(ORNL)

DakotaExt

Dakota

(SNL)

PSSDriversExt

(Multi Inst.)

• Primary/originating institution shown in Blue

• Most codes being contributed by multiple institutions

• All direct dependencies are NOT shown

• Dependencies between repos are though TriBITS package

dependencies

• CAS maintains compatible git repo forks of all these repos

MAMBA

(LANL)

4

Overview of SNL ATDM (2019)
5

Advanced Technology Development & Mitigation (ATDM) Project

• Started in FY14 under DOE Advanced Simulation and Computing (ASC) Program

• Consumed into the larger DOE Exascale Computing Project (ECP) in FY16

• Background/Motivation:

• Exascale computers coming in 2023 using new programming models and

hardware that current generation of ASC CSE codes will not run.

• Rapidly developing/changing pre-exascale hardware and system software

• Mission of ATDM:

• Design next-generation exascale CSE codes unconstrainted by software.

• Leverage components and advanced algorithms for sensitivity analysis,

design optimization, calibration, inversion, UQ/QMU, etc.

Sandia National Labs (SNL) ATDM Project:

• Two Primary SNL ATDM Codes:

• EMPIRE – ElectroMagnetic Plasma In Radiation Environments

• SPARC - Sandia Parallel Aerodynamics and Reentry Code

• Leveraging & co-developing 2nd Trilinos packages built on Kokkos abstraction

layer for on-node and on-GPU performance, Tpetra for node/GPU aware

distributed memory linear algebra data-structures, and solvers built on these.

SNL ATDM Development and Integration Overview (2019)

Challenges

◦ Very long and expensive builds for
templated Kokkos-based C++11 code.

◦ Limited computer testing resources.

◦ APPs needing frequent updates of
Trilinos without getting new defects

◦ Keeping Trilinos & APPs working on
changing ATDM/ECP platforms and
environments.

◦ Defects in system software (e.g.
compilers, MPI) slipping through
system testing and instead being
detected in Trilinos and APPs.

◦ Pushing for higher production-quality
software from Ph.D. researchers.

6

Development & Integration Overview

◦ Core functionality provided by SNL 2nd generation Trilinos (Kokkos, Tpetra, etc.)

◦ SNL ATDM APP requirements drive Trilinos development.

◦ Each SNL ATDM APP maintains its own fork of Trilinos that is updated
periodically.

Challenges in the Early Years of SNL ATDM (pre 2018)

• Trilinos Stability Problems:

• No testing requirement before Trilinos developers pushed changes to the

main ‘develop’ branch.

• Many nightly builds submitting to CDash dashboard had many failing builds

and failing tests that persisted for long periods of time.

=> Made it hard to see new defects

• Little-to-no automated testing of Trilinos suite on ATDM pre-exascale

platforms.

• ATDM APP developers and other staff members directly pulled from the main

Trilinos ‘develop’ branch:

• APP developers and other staff members often experienced broken builds.

• Some important builds (e.g. CUDA on GPUs) often broken for significant

lengths of time.

• Impact:

➢ Lower ATDM APP developer productivity.

➢ Lower confidence in Trilinos.

➢ Avoidance depending on more Trilinos packages that absolutely required.

7

8
Development & Integration Challenges: CASL & ATDM

Common challenges in CASL VERA and SNL ATDM:

• Balancing speed of integration vs. stability of updates

• Coordination of different development teams

• Keeping build and testing infrastructure working both in external

repos/projects and internal to the project

Different primary challenges in CASL VERA vs. SNL ATDM:

• CASL VERA:

• Coordination of different development teams for multiple

institutions.

• Maintaining integrated build, test, and deployment from many

different external projects.

• SNL ATDM:

• Productive development and integration on many unstable buggy

changing pre-exascale platforms.

• Maintaining portability on wide range of ATDM/ECP platforms

• Fast integration.

Multi-Team

Multi-Repository

Testing & Integration

Basics

9

What Not to Do

External

Repo1

External

Repo2

Project Native

Repo3

PkgA PkgB

PkgC PkgD

PkgE PkgF

Project Repos

External

Repo2 Devs

External

Repo1 Devs

Project

Devs

pull

push

pull

push

pull

10

pull

Why is this so bad?

• Lack of test coverage in the external repo’s

native test suite to cover project’s needs.

• External repo developers not testing

against the project’s code and tests.

• External repo may be broken w.r.t. to the

project for long period of time.

• Project developers frequently pull code

that does not even configure or build.

• Broken code frequently interrupting the

work of project developers.

Project Developers Directly

Pulling from the External Repos

pull

push

Managing Internal and External Development & Integration

External

Repo1

External

Repo2

Project Native

Repo3

PkgA PkgB

PkgC PkgD

PkgE PkgF

Project Copy

Repo1

Project Copy

Repo2

PkgA PkgB

PkgC PkgD

Project Repos

External

Repo2 Devs

Repo1

Integrator

Repo2 / Project

Co-developer

External

Repo1 Devs

Project Devs

Project

Releaser

Project must keep consistent clones of every

external repo and carefully sync updates!

Issues that need to be addressed:

• Flexibility for development inside and outside

of the project.

• Providing a flow of frequent stable updates of

the software.

• Maintaining the stability of the software to

keep project developers productive.

• Making non-backward compatible changes

across many repos.

• Full tracking of changes and updates.

pull

push

pull

push

pull

and/or

push

pull

and/or

push

pull

and/or

push

pull

and/or

push

pull

push

pull

11

pull

push

pull

push

Repo2

Integrator

12
Basic Parts to Development & Integration Process

• Git Workflows:

• How git repositories and branches are set up, how merges occur, what git

commands are run, etc.

• Different git workflows used for external repo developers, Project

developers, and repo/project co-developers.

• Testing gates for workflows:

• Gating test suites can/should be run before each “merge” in the workflow.

• Gating tests can be run manually or automated, daily or “every-so-often”.

• Important test suites:

RepoX build & tests: Gates updating the main RepoX development branch.

Project builds & tests: Gates all updates of the project’s repos.

• Detection, triage and fixing of new failing builds and tests:

• Detection and notification of new failures.

• Triage failures.

• Address failures.

• Manage & follow-up.

Single External Repo

Project Integration

Trilinos => ATDM APP

13

14
2) ATDM Trilinos Nightly Builds & Tests (CDash)

• Build and run

native Trilinos test

suite on all the

ATDM platforms.

• First step in

providing stable

portability on

many pre-exascale

platforms.

• Builds are too

expensive to run

more than one set

per 24-hour day.

• Frequent random

system failures

make detection of

new code-related

failures difficult.

15
ATDM Trilinos Development and Integration Workflows

APP/Trilinos

Integrator

APP

Developers

Trilinos

Dev 2
Trilinos

Dev 3

app-trilinos-repo/

master

github-trilinos/

develop

<github-user>/

1235-topic-b

Initial creation of

APP fork of Trilinos

Must pass gating:

2) ATDM Trilinos

builds & tests

3) APP nightly

builds & tests

<github-user>/

1234-topic-a

Must pass gating:

1) Auto PR Trilinos

builds & tests

Trilinos

Dev 1

commits on

branch

<main-branch>
(explicit) merge

commit

Unspecified git

graph/history

link to ancestor

commit

link to merge ancestor

branch

references

Person creating

commit

<topic-branch>

Legend for Git

Workflow Diagrams

Time

direct commit on

<main-branch>

Adventurous Trilinos

Users

Trilinos/Empire

Co-Developers

16
Injecting New Failures and Fixing Failures: A Race!

• Mean-time to fail: Average time (in days) for when a new failure shows up in

‘develop’ branch in one or more promoted ATDM Trilinos builds.

• Mean-time to fix: Average time (in days) to discover, triage and fix a failure on

the Trilinos ‘develop’ branch in the promoted ATDM Trilinos builds.

• The core problem: If “mean-time to fail” is less than “mean-time to fix”, then

the ATDM Trilinos builds on ‘develop’ on average will ALWAYS be broken (and

therefore block updates of Trilinos to the APP customers)!

Mean-time to fix

<

Mean-time to fail #
 F

a
il
u
re

s

Time (days)

Mean-time to fix

>

Mean-time to fail

100% clean allowing Trilinos APP updates

#
 F

a
il
u
re

s

Reducing Time to

Detect, Triage, and

Address New Failures

ATDM Trilinos Builds

& Tests

17

18

General SE Principles for Defects

• Lean/Agile SE Practices for dealing with defects:

• Strong automated testing (have tests help new detect defects)

• Continuous testing (reduce the time to detect new defects caught by tests)

• Continuous integration (reduce time to detect conflict defects)

• STOP THE LINE when a new defect gets into the main development branch

• Fixing defects in previously working software is higher priority than developing

new features!

• Cost of a defect goes up

(significantly) the longer it

takes to detect and correct a

defect.

19
Detecting New Failures/Missing Results: CDash Email

Failures in red may

require triage!
• Missing test results!

• Failing tests without

issue trackers!

20

Reproducing ATDM Trilinos Builds: GitHub Issue

21
How to Address Failures?

Already cleaned-up promoted builds clean:

a) Fix the failures => Best option!

b) Mark failing tests as “allow to fail” and not trigger global FAIL:

• Only for non-blocking issues

• Allows us to watch test run but not block updates of Trilinos to APPs

• Best for when someone is working to fix non-blocking failures.

c) (Temporarily) disable failing tests:

• Only for non-blocking issues

• Best for cases where no-one is going to work on fixing the failures soon.

d) Revert the commit(s) (or PR merge) causing the failure:

• Best for critical/blocking failures that can’t be fixed ASAP.

Initial failures setting up new platforms:

a) Fix the failures

b) (Temporarily) disable failing tests

c) Mark failing tests as “allow to fail” and not trigger global FAIL

• NOTE: Reverting commits is NOT an option for cleaning up failures that occur

when setting up new builds on new platforms or envs on existing platforms.

22
Conclusions and Lesions Learned CASL & SNL ATDM

• Projects must set up their own forks of external repos that must be

frequently updated and define integration testing workflows

• Detecting, Traiging, and Addressing New Failures:

• Running tests using similar configurations on different systems and compilers

helps to speed up detection of new software defects.

• Effective detection and triaging requires an analysis tool that takes a broad

view of build and tests results to show trends, commonality, and history.

• Likely 90-95% of failing (Trilinos) tests don’t indicate a problem impacting a

specific customer but they hide the 5-10% that do.

• Must carefully scrutinize every failing test to detect new defects.

• Must not allow existing failures to hide new failures!

• Build and Test Systems:

• Heterogenous build and test systems significantly increase development and

maintenance costs and slow/delay integrations.

• Homogenous build and test systems across teams and software reduce

development and maintenance costs and speeds integrations. (i.e. CASL)

One of biggest impediments to improving development and integration

workflows is developer inability/unwillingness to learn git!

