Sandia
National
Laboratories

Development and Integration
Workflows for Large Complex
Distributed CSE Software
Efforts

APP
DatraTransferkit ! Developers

f WANEA ! Co-Developers
v (LANL)) o
APP/Tri
\tegrstor G - | Other Trilinos 2
p {PennState) | Ger kages |
1 | APP/Trilinos

‘E Integrators.
trilinos-github/ N
develop T e el

' ! SuperLUDist : f
<github-user=/ ! Trilinos.
1235-topic-b freei Developers

Roscoe A. Bartlett, Ph.D.
Dept. Software Engineering & Research

https://bartlettroscoe.github.io
- — (DENERGY NUISA

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of

Energy’s National Nuclear Security
= Administration under contract DE-NA0003525.

Overview of CASL

¥ /) u -
E' El m . Los Alamos III ll 2
). ' andia
NC SRJ.?\]EEH SITY |({ |};\(E @;:;Zm;”es m Westinghouse

CASL: Consortium for the Advanced Simulation of Lightwater reactors
DOE Innovation Hub including DOE labs, universities, and industry partners
Goals:

« Advance modeling and simulation of lightwater nuclear reactors

» Produce a set of simulation tools to model lightwater nuclear reactor cores
to provide to the nuclear industry: VERA: Virtual Environment for
Reactor Applications.

Phase 1: July 2010 — June 2015 Roscoe Bartlett was PHI software
Phase 2: July 2015 — June 2020 engineering and integration lead
Organization and management: for CASL from 2010-2016.

* ORNL is the hub of the Hub

* Milestone driven (6 month plan-of-records (PoRs))

* Focus areas: Physics Integration (PHI), Thermal Hydraulic Methods
(THM), Radiation Transport Methods (RTM), Advanced Modeling
Applications (AMA), Materials Performance and Optimization (MPO),
Validation and Uncertainty Quantification (VUQ)

3

CASL VERA Development & Integration Overview (=2016)

VERA development is complicated!

VERA Currently Composed of:
« 21 different repositories on casl-dev.ornl.gov (some git clones of other repos) most
with a different access list (NDAs, Export Control, IP, etc.)
» Integrating development efforts from many teams from 9+ institutions

Large single CMake build system using TriBITS CMake Framework:
» Very large full source code base:
» 55K source and script files
* 12M lines of code (not comments)
o 2,700 CMakelLists.txt files
« 229 packages + subpackages enabled (out of 496 total) = 46% of full code base
* Most CMake developer reconfigures take place in less than 30 seconds!
VERA Software Development Process:
* VERA integration maintained by continuous and nightly testing:
» Pre-push Cl testing: checkin-test-vera.sh, cloned VERA git repos
» Post-push Cl testing: CTest/CDash, all VERA git repos
» Nightly testing: MPI and Serial builds, Debug and Release builds, ...
* Maintain 100% passing builds and tests most days!
* Many internal and external repository integrations on daily basis
» VERA releases are taken off of stable ‘master’ branches on casl-dev git repos.
» Low maintenance cost of the infrastructure

4

(Selected) CASL VERA Git Repositories (=2015)

Trilinos
(SNL)

’_T

TeuchosWrappersExt
(Multi Inst.)

f_l

MAMBA

(LA

NL)

VERAINEXxt
(Multi Inst.)

A

A

A

COBRA-TF
(PennState)

DatraTransferKit

)

<

A

Primary/originating institution shown in Blue

Most codes being contributed by multiple institutions

All direct dependencies are NOT shown

Dependencies between repos are though TriBITS package
dependencies
CAS maintains compatible git repo forks of all these repos

(ORNL)
\ MOOSEEXxt
SCALE (ORNL) MOOSE /
Bison (INL)
Exnihilo
(ORNL)
MPACT
(U.Mich.) [T~ |
PSSDriversExt
(Multi Inst.)
DakotaExt
’ VUQDemos
Dakota < (SNL)
(SNL)

Overview of SNL ATDM (2019)
5

Advanced Technology Development & Mitigation (ATDM) Project

» Started in FY14 under DOE Advanced Simulation and Computing (ASC) Program
» Consumed into the larger DOE Exascale Computing Project (ECP) in FY16

« Background/Motivation:

« Exascale computers coming in 2023 using new programming models and
hardware that current generation of ASC CSE codes will not run.

» Rapidly developing/changing pre-exascale hardware and system software
* Mission of ATDM:
» Design next-generation exascale CSE codes unconstrainted by software.
» Leverage components and advanced algorithms for sensitivity analysis,
design optimization, calibration, inversion, UQ/QMU, etc.
Sandia National Labs (SNL) ATDM Project:
« Two Primary SNL ATDM Codes:
« EMPIRE - ElectroMagnetic Plasma In Radiation Environments

« SPARC - Sandia Parallel Aerodynamics and Reentry Code

« Leveraging & co-developing 2" Trilinos packages built on Kokkos abstraction
layer for on-node and on-GPU performance, Tpetra for node/GPU aware
distributed memory linear algebra data-structures, and solvers built on these.

SNL ATDM Development and Integration Overview (2019)

6

Development & Integration Overview
- Core functionality provided by SNL 2" generation Trilinos (Kokkos, Tpetra, etc.)
> SNL ATDM APP requirements drive Trilinos development.

- Each SNL ATDM APP maintains its own fork of Trilinos that is updated
periodically.

EMPIRE |

Kokkos

Challenges

> Very long and expensive builds for
templated Kokkos-based C++11 code.

- Limited computer testing resources.
> APPs needing frequent updates of

Developers

1
1
1 1
1 1
~
1 ~ 1
1 1
~
1 - \I
1 T [AN
~
————————— ~
~
____________________________________ R ~
~
’ [N ~
1 Y i
1 Y _-
1 -
1
1
1

Panzer,
Intrepid2,
Phalanx

- N Trilinos without getting new defects
+ EMPIRE/Trilinos

- Keeping Trilinos & APPs working on

Co-Developers

v

Other Trili
Generation Packages

nos 2

Kokkos

changing ATDM/ECP platforms and
environments.

- Defects in system software (e.g.

1

1

I \

1 Ay
T~ - \
: TN
1 =
1

1

I

1

APP/Trilinos
. Integrators compilers, MPI) slipping through
system testing and instead being
% detected in Trilinos and APPs.
Trilinos - Pushing for higher production-quality
Developers software from Ph.D. researchers.

__

Challenges in the Early Years of SNL ATDM (pre 2018)
7

» Trilinos Stability Problems:

» No testing requirement before Trilinos developers pushed changes to the
main ‘develop’ branch.

» Many nightly builds submitting to CDash dashboard had many failing builds
and failing tests that persisted for long periods of time.

=> Made it hard to see new defects

» Little-to-no automated testing of Trilinos suite on ATDM pre-exascale
platforms.

« ATDM APP developers and other staff members directly pulled from the main
Trilinos ‘develop’ branch:

» APP developers and other staff members often experienced broken builds.

« Some important builds (e.g. CUDA on GPUs) often broken for significant
lengths of time.

* |mpact:
> Lower ATDM APP developer productivity.
» Lower confidence in Trilinos.
> Avoidance depending on more Trilinos packages that absolutely required.

. Development & Integration Challenges: CASL & ATDM
Common challenges in CASL VERA and SNL ATDM:

« Balancing speed of integration vs. stability of updates

« Coordination of different development teams

» Keeping build and testing infrastructure working both in external
repos/projects and internal to the project

Different primary challenges in CASL VERA vs. SNL ATDM:
« CASL VERA:

« Coordination of different development teams for multiple
institutions.

* Maintaining integrated build, test, and deployment from many
different external projects.

* SNL ATDM:

* Productive development and integration on many unstable buggy
changing pre-exascale platforms.

« Maintaining portability on wide range of ATDM/ECP platforms
* Fast integration.

Multi-Team
Multi-Repository
Testing & Integration|

Basics i

What Not to Do

10
pull External
<;> push Repo1
* PkgA PkgB
External pull
Repol Devs
pum External
pus
_ Repo2 oull
PkgC PkgD
External
Repo2 Devs

Why is this so bad?

» Lack of test coverage in the external repo’s
native test suite to cover project’s needs.

« External repo developers not testing
against the project’s code and tests.

« External repo may be broken w.r.t. to the
project for long period of time.

* Project developers frequently pull code
that does not even configure or build.

« Broken code frequently interrupting the
work of project developers.

Project Developers Directly
Pulling from the External Repos

Project Repos

Project

Devs Project Native

Repo3

PkgE PkgF

Managing Internal and External Development & Integration

Project must keep consistent clones of every
external repo and carefully sync updates!

Issues that need to be addressed:

X

Repo2 / Project
Co-developer

Project Native

 Flexibility for development inside and outside oul Repo3
of th.e.prOJect. PkgE PkaF
« Providing a flow of frequent stable updates of

11
pull pull T STt
and/or and/or | Project Repos !
Q pull External push push ! |
push Repo1 E Project Copy !
* . Repo1 :
PkgA PkgB Repol | E
External pull Integrator ull | PkgA PkgB |
Repol Devs and/or arF])d/or | 5 !
pull External push % push | :
push Repo2 : !
—_— ! Project Copy :
ull Repo2 , |
External PkgC A pFLsh Integrator pull ! Repoz E
Repo2 Devs push : PkgC PkgD E

% push
Project Devs %

Project
Releaser

the software.

* Maintaining the stability of the software to
keep project developers productive.

* Making non-backward compatible changes
across many repos.

« Full tracking of changes and updates.

. Basic Parts to Development & Integration Process

« Git Workflows:

» How git repositories and branches are set up, how merges occur, what git
commands are run, etc.

» Different git workflows used for external repo developers, Project
developers, and repo/project co-developers.

» Testing gates for workflows:
» Gating test suites can/should be run before each “merge” in the workflow.
» (Gating tests can be run manually or automated, daily or “every-so-often”.
* Important test suites:
RepoX build & tests: Gates updating the main RepoX development branch.
Project builds & tests: Gates all updates of the project’s repos.

» Detection, triage and fixing of new failing builds and tests:
« Detection and notification of new failures.
» Triage failures.
» Address failures.
» Manage & follow-up.

13‘

Single External Repo |
Project Integration

|
Trilinos => ATDM APP
\

y 2) ATDM Trilinos Nightly Builds & Tests (CDash) 0

“atDM 30 builds .
e - * Build and run
Wam Time Time & Prac Time Start Tima Labals
sema-had |} Tril i helf-gnu-opt-senal 28 30m 25 &m 135 41m s Oct 22, 2018 - 0818 UTC ({25 labsls) * °l1e
sems-ma | Triinos-atdm-sems-mel§-gnu-opt-cpenmp 28 3Gm 53s Gm 42z 45m 385 Oct 22, 2018 -0528 UTC (25 labsls) nat]ve Tr] l] nOS test
hansen A Trl tdim-h hiller-intel-opt-serial 50 1h 26m 20s 5m 435 1h22m 10s | Oet 22, 2018-1kD3UTC [(25 labels) .
hansen & Trilinos-atdm-hansen-shiler-intel-debug-sarial 50 | th26m 17s 5mS8s | 1h23m51s | Oct22, 2016-08:25UTC |25 Isbels) S u '| te 0 n a l l t h e
seme-hel | () Trlinos-stdm-sems~rhelS-intel-opt-openmp 50 1h 38m s Bm 1s 50m 13s Oct 22, 2018 - 421 UTC (25 labsls)
hansen O Trfinos-stdm-hansen-shier-intel-opt-openmp 50 1h28mis Gm 24z 1h31m3Fs | Oct22 2M8-11:04UTC |23 Isbels) ATDM platfo rms
whitz) Trlinos-atdm-white-ride-gnu-opt-openmp 15 24m 50s 6m 325 1h31m27s | Oect22 2018-08:10UTC |25 labels) A
watzrman |0} Trifinos-atdm-waterman-gnu-cpt-openmp 15 18m 585 &m 8z 2h1Tm 32s | Oet22 2018-04:24 UTC |25 Isbels)
harszn 0 Trlinos-atdm-hanszn-chiler-gnu-cpt-openmp E 32m B85 8m 33z Th4imds Oct 22, 2018 - 1245 UTC (25 Isbels)
hansan O Trlinos-atdm-hansen-shiler-intel-debug-openmp 50 1h 33m 30s 2m 185 3h3m 15s Oct 22, 2018 - 1048 UTC (25 labels)
SErano O Trlinos-atdm-semanc-int=l-opt-opanmp 50 3h 24m 43s 14m 205 1hd4Tm237s | Oct22 2018-04:25UTC |25 Isbels) 0 .
chama O Triinos-atdm-chama-intel-dsbug-op=nmp 50 Th 20m 11s 14m 35z 1h48m42s | Oct22 2018-04:33UTC (25 labels) L4 F] rSt Ste p] n
chama A Triinos-atdm-chama-intel-opt-openmp 50 | 5h33m 50s 14m53s | 1hSim1s | Oct22 2018-0438UTC (25 labels) R
senz.no O T |n05’ahdTpsena.m—!nheldebl.-;«:penrrp 50 | 4h12m 54s 15m 3s 1h52m 43s | Oct22,2015-04:30UTC |25 labels) p rov'l d 'I n g Sta b le
matring a Trilings-atdm-mutrino-intehopt-openmp-KNL-panzer 50 1h31m 215 18m 185 2h&m 23s Oct 22, 2018 - 1428 UTC |Panzer
white D Tri inos-atdm-white-ride-gnu-detug-openmp 14 19m 185 18m 585 4h 1im20s | Oet22, 2018 -08:30UTC |25 labels) L
semz-thal | () Trlinos-atdm-sems-rheld-gnu-debug-ocenmp 28 30m 335 1Tm3s 2h 9m 50s Oct 22, 2018 - 0814 UTC (25 labels) po rtab] l-]ty On
semz-thal | Trlinos-atdm-sems-rhelf-gnu-debug-seris’ 28 28m 35 18m 155 2h14m 10s | Oet22, 2018 - M4:30UTC |25 labels)
hansen O Trfinos-atdm-hansen-shiler-gnu-debug-cpenmeo 2 32m 385 18m 325 4h1Tm 30s | Oct22 2018-0%50UTC |25 lsbels) many pre'exascale
hansen 0 Trfingos-atdm-hansen-shler-gnu-oot-saris) 2 3am 14z 21m 18s 5h15m 18s | Oct22, 2018-07:24 UTC |23 Isbels)
hansen 1 Triinas-atdm- hillar-gnu-debug-serial 4 35m s 30m25s | 6h40m s | Oct22 2013-08:13UTC |25 labels) platforms
whit=) Trlinos-atdm-white-ride-cuda-0. 2-opt & &0 1h 3m 10s 3Iméz 4h18m 175 | Owt22 2018-08:47UTC |25 Isbel=) *
white) Trlinos-atdm-white-ride-cuda-0 2-debug & 50 1h 30m 31s 46m 37s Bh Tm 225 Ot 22, 2018 - 08:24 UTC ({25 Isbels)
wat=rman | % Trfinos-atdm-waterman-cuda-.2-opt 50 5Em 3s 40m 2Bs Bh31m28s | Oet22 2018-04:13UTC |25 Isbels)
O Tl td man-cuda-8.2-debug 50 1h 25m 155 1h18s Th56m 54s | Oct22 2018 -04:58UTC (25 labels)
hansan O Triinos-atdm-hansen-shiller-cuda-0.0-debug & 50 | 2h 44m 425 1h 13m 185 | @h33m 11z | Oect22 2ME-11:42UTC [(25 Isbels) >
hansan) Trfinos-atdm-hansen-chiler-cuds-0.0-opt & 50 1h 59m 21s 1h25m 11s | 11h 8m 47s | Oet 22, 2018-1240UTC (25 labels) b BU] ldS are too
hansen) Trfinos-atdm-hansan-sh ler-cuda-B.0-opt & 50 2h 1m 45 1h 27m40s | 11h 2Tm34s | Ot 22, 2018 -08:15UTC (25 labels) .
hansen (b Triines-atdm-hansen-shiller-cuda-8.0-debug & 50 | 2n 10m 455 1h32m41s | 12n Tm18s | OtZ2, 2018-0614UTC |25 labels) expenS]Ve to run
matring D Tri ings-atdm-mutrino-intelopt-openmg-HEW & &0 5h 52m 285 2h 29m18s | 21h8m4s Oct 22, 2018 - 0542 UTC (25 labels)
. more than one set
iali 12 builds
B p— o - per 24-hour day.
Wam Tima Tima ¥ Proc Tima start Tima Labale
mtring) Trlinos-atdm-mutrino-inte-opt-openmpKNL & 50 | 5h 54m 315 3h 53m 45z | 1 day Bh 59m 52s | Oct 22, 2018 - 05:41 UTC (25 labels)
ride) Trlinos-atdm-white-ride-cuds-0. 2-debug-pt & 50 (2h 20m 23z 1h 10m 175 Sk 18rm 183 Oct 22, 2018 -04:23 UTC |[54 Isbels)
white O Trlinos-atdm-white-ride-cuda-0. 2-debug-pt & 50 | 2h 15m 545 1h 10m 8h 13m 185 Oct 22, 2018 - D6:24 UTC |54 labels)
wat=rman O Trfinos-atdm-waterman-cuda-0.2-reless=-debug & 80 | 1h22m 23s S4m 30s Th 11m 18s Oct 22, 2018 - D8:08 UTC (25 Isbels)
ride) Trfinos-atdm-white-ride-cuda-3 2-debug & 50 | 1h 31m 20s 45m 44z Gh 8m 13s Oct 22, 2018 - 04:54 UTC |25 labels) b Freq uent random
ride O Triinos-atdm-white-ride-cuda-3. 2-opt & 50 ih 3m 55 3Zm 43s 4h 18m 48s Oct 22, 2018 - 04:22 UTC |25 labels) .
fide A Triinos-atdm-white-ride-gnu-debug-apenmp 14 | tomass 1Bm57s | 4h1zm4zs | Oct22, 2013-04:24 UTC [[25 tsbals) Syste m fa] l u res
watsrman 0 Triinos-atd m-waterman-gnu-release-debug-openmp & 21 21m 48s Tm 355 Zh Bm 13s QOct 22, 2012 -0T:20 UTC (25 labels)
pa— A Triinas-atim-ces-melS-inteh-opt-szrial & 50 | 1h4m4as g S4m 50s Oct 22, 2018 - 07:38 UTC [[27 labels) make detect-ion Of
ride 0 Triinos-atd m-white-ride-gnu-opt-openmp 15 24m 435 8m 2Ts 1h3im2s Oct 22, 2018 - 0417 UTC |25 labsls)
cee-theld 0 Trfinos-atdm-ces-teli-clang-opt-serial & &0 om 235 Sm 5fs 44m 145 Oct 22, 2018 - DB:10 UTC (27 labels)
cee-rheld 0 Trilinos-atdm-cee-melG-griv-opt-serial & El 35m15s Srn 4Es 43m 52z Oct 22, 2018 - D6:55 UTC |27 labels) n eW COd e = re la te d
[lizems per page[a1 ¥ |

failures difficult.

ATDM Trilinos Development and Integration Workflows

15

Initial creation of

APP fork of Trilinos
| |

[app-trilinos-repo/

master

Must pass gating:
1) Auto PR Trilinos
builds & tests

s
e \\

L” RN

Must pass gating:
2) ATDM Trilinos
builds & tests

3) APP nightly
builds & testﬁ\l\

/N

// -7 /'
%/ [<github-user>/

1234-topic-a

Trilinos

Trilinos Tr|||nos

Dev 1

Dev 2 Dev 3

N APP

w® % . Developers
\\ \
\
\
N
\\
APP/Trilinos >
Integrator -
e

-7 Trilinos/Empire
e Co-Developers

e
e
'
e

github-trilinos/] e

develop

Adventurous Trilinos
Users

<github-user>/
1235-topic-b

Legend for Git
Workflow Diagrams

-~

direct commit on

link to ancestor

(explicit) merge .)
commit <main-branch>)
'

Unspecified g1t
graph/history

s; \

Person creating
commit

7

<main-branch> comm1t
S yid
R
\
commits on branch
branch _ - link to merge ancestor references
NS

4——[<topic-branch>] Ve

"

— Timej

Injecting New Failures and Fixing Failures: A Race!

16
* Mean-time to fail: Average time (in days) for when a new failure shows up in

‘develop’ branch in one or more promoted ATDM Trilinos builds.

* Mean-time to fix: Average time (in days) to discover, triage and fix a failure on
the Trilinos ‘develop’ branch in the promoted ATDM Trilinos builds.

* The core problem: If “mean-time to fail” is less than “mean-time to fix”, then
the ATDM Trilinos builds on ‘develop’ on average will ALWAYS be broken (and
therefore block updates of Trilinos to the APP customers)!

/I__/\I\ /

Mean-time to fix
<

Mean-time to fail

Failures

100% clean allowing Trilinos APP updates

Q ol ; Tlme (days) |

Mean-time to fix
>

Mean-time to fail

Failures

M

17‘

Reducing Time to
Detect, Triage, and |
Address New Failures

ATDM Trilinos Builds |
& Tests i

General SE Principles for Defects
18

—_
N
o

« Cost of a defect goes up
(significantly) the longer it
takes to detect and correct a
defect.

—
L
(=

=3
o

<
o

N
o

Relative Cost to Correct a Defect
3

0_—5—;- ;.;
Code

Requirements Design Test Operation

Development Phase

« Lean/Agile SE Practices for dealing with defects:
« Strong automated testing (have tests help new detect defects)
« Continuous testing (reduce the time to detect new defects caught by tests)
» Continuous integration (reduce time to detect conflict defects)
« STOP THE LINE when a new defect gets into the main development branch

» Fixing defects in previously working software is higher priority than developing
new features!

Detecting New Failures/Missing Results: CDash Email

19

FAILED (bm=1, twoif=2, twip=1, twif=2): Promoted ATDM Trilinos Builds on 2019-01-04

Builds on CDash (num/expected=33/33)

Non-passing Tests on CDash (hum=4)

Builds Missing: bm=1
Tests without issue trackers Failed: twoif=2

Failuresinred may | .
require triage!

Tests with issue trackers Passed: twip=1
Tests with issue trackers Failed: twif=2

Builds Missing: bm=1

l

issue trackers!

Missing test results!
* Failing tests without

Group

Site

Build Name

Missing Status

ATDM

waterman

Trilinos-atdm-waterman-cuda-9.2-release-debug

Build exists but no test results

Tests without issue trackers Failed (limited to 20): twoif=2

Build Name

Test Name

Details

Pass Last
30 Days

Consecutive Non- Non-pass

pass Days Last 30 Days

Issue
Tracker

Trilinos-atdm-sems-rhel6-

Belos BlockGmresPoly Epetra -

intel-opt-openmp

File Ex 0 MPI 4

Completed
(Failed)

Tests with issue trackers Failed: twif=2

. .) Consecutive Non- Non-pass Pass Last Issue
Site Build Name Test Name Status Details
pass Days Last 30 Days 30 Days Tracker
. Trilinos-atdm-mutrino- Anasazi_Epetra BKS norestart - . Completed
mutrino || 7 Failed . 21 21 3 #3499
intel-opt-openmp-HSW test MPI 4 (Failed)

Reproducing ATDM Trilinos Builds: GitHub Issue
20

C O @& GitHub, Inc. [US] | https://github.com/trilinos/Trilinos/issues/3681 Yt

Steps to Reproduce

One should be able to reproduce this failure on waterman as described in:

e https:.//github.com/trilinos/Trilinos/blob/develop/cmake/std/atdm/README.md
More specifically, the commands given for waterman are provided at:

e https://github.com/trilinos/Trilinos/blob/develop/cmake/std/atdm/README.md#waterman
The exact commands to reproduce this issue should be:

$ cd <some_build _dir>/
$ source $TRILINOS DIR/cmake/std/atdm/load-env.sh cuda-9.2-release-debug
% cmake
-GMNinja
-DTrilinos CONFIGURE OPTIONS FILE:STRING=cmake/std/atdm/ATDMDevEnv.cmake %
-DTrilinos ENABLE TESTS5=0M -DTrilinos ENABLE Intrepid2=0N %
$TRILINOS_DIR
% make NP=28

% bsub -x -Is -n 28 ctest -j2@

&

me

. How to Address Failures?
Already cleaned-up promoted builds clean:
a) Fix the failures => Best option!
b) Mark failing tests as “allow to fail” and not trigger global FAIL:
« Only for non-blocking issues
* Allows us to watch test run but not block updates of Trilinos to APPs
« Best for when someone is working to fix non-blocking failures.
c) (Temporarily) disable failing tests:
« Only for non-blocking issues
» Best for cases where no-one is going to work on fixing the failures soon.
d) Revert the commit(s) (or PR merge) causing the failure:
» Best for critical/blocking failures that can’t be fixed ASAP.

Initial failures setting up new platforms:

a) Fix the failures

b) (Temporarily) disable failing tests

c) Mark failing tests as “allow to fail” and not trigger global FAIL

 NOTE: Reverting commits is NOT an option for cleaning up failures that occur
when setting up new builds on new platforms or envs on existing platforms.

. Conclusions and Lesions Learned CASL & SNL ATDM
* Projects must set up their own forks of external repos that must be
frequently updated and define integration testing workflows

« Detecting, Traiging, and Addressing New Failures:

* Running tests using similar configurations on different systems and compilers
helps to speed up detection of new software defects.

» Effective detection and triaging requires an analysis tool that takes a broad
view of build and tests results to show trends, commonality, and history.

» Likely 90-95% of failing (Trilinos) tests don’t indicate a problem impacting a
specific customer but they hide the 5-10% that do.

* Must carefully scrutinize every failing test to detect new defects.
* Must not allow existing failures to hide new failures!

« Build and Test Systems:
» Heterogenous build and test systems significantly increase development and
maintenance costs and slow/delay integrations.

» Homogenous build and test systems across teams and software reduce
development and maintenance costs and speeds integrations. (i.e. CASL)

