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Overview of CASL
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CASL: Consortium for the Advanced Simulation of Lightwater reactors
DOE Innovation Hub including DOE labs, universities, and industry partners
Goals:

« Advance modeling and simulation of lightwater nuclear reactors

» Produce a set of simulation tools to model lightwater nuclear reactor cores
to provide to the nuclear industry: VERA: Virtual Environment for
Reactor Applications.

Phase 1: July 2010 — June 2015 Roscoe Bartlett was PHI software
Phase 2: July 2015 — June 2020 engineering and integration lead
Organization and management: for CASL from 2010-2016.

* ORNL is the hub of the Hub

* Milestone driven (6 month plan-of-records (PoRs))

* Focus areas: Physics Integration (PHI), Thermal Hydraulic Methods
(THM), Radiation Transport Methods (RTM), Advanced Modeling
Applications (AMA), Materials Performance and Optimization (MPO),
Validation and Uncertainty Quantification (VUQ)
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CASL VERA Development & Integration Overview (=2016)

VERA development is complicated!

VERA Currently Composed of:
« 21 different repositories on casl-dev.ornl.gov (some git clones of other repos) most
with a different access list (NDAs, Export Control, IP, etc.)
» Integrating development efforts from many teams from 9+ institutions

Large single CMake build system using TriBITS CMake Framework:
» Very large full source code base:
» 55K source and script files
* 12M lines of code (not comments)
o 2,700 CMakelLists.txt files
« 229 packages + subpackages enabled (out of 496 total) = 46% of full code base
* Most CMake developer reconfigures take place in less than 30 seconds!
VERA Software Development Process:
* VERA integration maintained by continuous and nightly testing:
» Pre-push Cl testing: checkin-test-vera.sh, cloned VERA git repos
» Post-push Cl testing: CTest/CDash, all VERA git repos
» Nightly testing: MPI and Serial builds, Debug and Release builds, ...
* Maintain 100% passing builds and tests most days!
* Many internal and external repository integrations on daily basis
» VERA releases are taken off of stable ‘master’ branches on casl-dev git repos.
» Low maintenance cost of the infrastructure
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(Selected) CASL VERA Git Repositories (=2015)
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Overview of SNL ATDM (2019)
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Advanced Technology Development & Mitigation (ATDM) Project

» Started in FY14 under DOE Advanced Simulation and Computing (ASC) Program
» Consumed into the larger DOE Exascale Computing Project (ECP) in FY16

« Background/Motivation:

« Exascale computers coming in 2023 using new programming models and
hardware that current generation of ASC CSE codes will not run.

» Rapidly developing/changing pre-exascale hardware and system software
* Mission of ATDM:
» Design next-generation exascale CSE codes unconstrainted by software.
» Leverage components and advanced algorithms for sensitivity analysis,
design optimization, calibration, inversion, UQ/QMU, etc.
Sandia National Labs (SNL) ATDM Project:
« Two Primary SNL ATDM Codes:
« EMPIRE - ElectroMagnetic Plasma In Radiation Environments

« SPARC - Sandia Parallel Aerodynamics and Reentry Code

« Leveraging & co-developing 2" Trilinos packages built on Kokkos abstraction
layer for on-node and on-GPU performance, Tpetra for node/GPU aware
distributed memory linear algebra data-structures, and solvers built on these.



SNL ATDM Development and Integration Overview (2019)
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Development & Integration Overview
- Core functionality provided by SNL 2" generation Trilinos (Kokkos, Tpetra, etc.)
> SNL ATDM APP requirements drive Trilinos development.

- Each SNL ATDM APP maintains its own fork of Trilinos that is updated
periodically.
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Kokkos

Challenges

> Very long and expensive builds for
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Challenges in the Early Years of SNL ATDM (pre 2018)
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» Trilinos Stability Problems:

» No testing requirement before Trilinos developers pushed changes to the
main ‘develop’ branch.

» Many nightly builds submitting to CDash dashboard had many failing builds
and failing tests that persisted for long periods of time.

=> Made it hard to see new defects

» Little-to-no automated testing of Trilinos suite on ATDM pre-exascale
platforms.

« ATDM APP developers and other staff members directly pulled from the main
Trilinos ‘develop’ branch:

» APP developers and other staff members often experienced broken builds.

« Some important builds (e.g. CUDA on GPUs) often broken for significant
lengths of time.

* |mpact:
> Lower ATDM APP developer productivity.
» Lower confidence in Trilinos.
> Avoidance depending on more Trilinos packages that absolutely required.




. Development & Integration Challenges: CASL & ATDM
Common challenges in CASL VERA and SNL ATDM:

« Balancing speed of integration vs. stability of updates

« Coordination of different development teams

» Keeping build and testing infrastructure working both in external
repos/projects and internal to the project

Different primary challenges in CASL VERA vs. SNL ATDM:
« CASL VERA:

« Coordination of different development teams for multiple
institutions.

* Maintaining integrated build, test, and deployment from many
different external projects.

* SNL ATDM:

* Productive development and integration on many unstable buggy
changing pre-exascale platforms.

« Maintaining portability on wide range of ATDM/ECP platforms
* Fast integration.
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What Not to Do
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pull External
<;> push Repo1
* PkgA PkgB
External pull
Repol Devs
pum External
pus
_ Repo2 oull
PkgC PkgD
External
Repo2 Devs

Why is this so bad?

» Lack of test coverage in the external repo’s
native test suite to cover project’s needs.

« External repo developers not testing
against the project’s code and tests.

« External repo may be broken w.r.t. to the
project for long period of time.

* Project developers frequently pull code
that does not even configure or build.

« Broken code frequently interrupting the
work of project developers.

Project Developers Directly
Pulling from the External Repos

Project Repos

Project

Devs Project Native

Repo3

PkgE PkgF




Managing Internal and External Development & Integration

Project must keep consistent clones of every
external repo and carefully sync updates!

Issues that need to be addressed:

X

Repo2 / Project
Co-developer

Project Native

 Flexibility for development inside and outside oul Repo3
of th.e.prOJect. PkgE PkaF
« Providing a flow of frequent stable updates of
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pull pull T STt
and/or and/or | Project Repos !
Q pull External push push ! |
push Repo1 E Project Copy !
* . Repo1 :
PkgA PkgB Repol | E
External pull Integrator ull | PkgA PkgB |
Repol Devs and/or arF])d/or | 5 !
pull External push % push | :
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—_— ! Project Copy :
ull Repo2 , |
External PkgC A pFLsh Integrator  pull ! Repoz E
Repo2 Devs push : PkgC PkgD E

% push
Project Devs %

Project
Releaser

the software.

* Maintaining the stability of the software to
keep project developers productive.

* Making non-backward compatible changes
across many repos.

« Full tracking of changes and updates.




. Basic Parts to Development & Integration Process

« Git Workflows:

» How git repositories and branches are set up, how merges occur, what git
commands are run, etc.

» Different git workflows used for external repo developers, Project
developers, and repo/project co-developers.

» Testing gates for workflows:
» Gating test suites can/should be run before each “merge” in the workflow.
» (Gating tests can be run manually or automated, daily or “every-so-often”.
* Important test suites:
RepoX build & tests: Gates updating the main RepoX development branch.
Project builds & tests: Gates all updates of the project’s repos.

» Detection, triage and fixing of new failing builds and tests:
« Detection and notification of new failures.
» Triage failures.
» Address failures.
» Manage & follow-up.
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y 2) ATDM Trilinos Nightly Builds & Tests (CDash) 0
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ATDM Trilinos Development and Integration Workflows
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Injecting New Failures and Fixing Failures: A Race!
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* Mean-time to fail: Average time (in days) for when a new failure shows up in

‘develop’ branch in one or more promoted ATDM Trilinos builds.

* Mean-time to fix: Average time (in days) to discover, triage and fix a failure on
the Trilinos ‘develop’ branch in the promoted ATDM Trilinos builds.

* The core problem: If “mean-time to fail” is less than “mean-time to fix”, then
the ATDM Trilinos builds on ‘develop’ on average will ALWAYS be broken (and
therefore block updates of Trilinos to the APP customers)!

/I\_\_/\I\ /

Mean-time to fix
<

Mean-time to fail

# Failures

100% clean allowing Trilinos APP updates

Q ol ; Tlme (days) |

Mean-time to fix
>

Mean-time to fail

# Failures

M
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Reducing Time to
Detect, Triage, and |
Address New Failures

ATDM Trilinos Builds |
& Tests i




General SE Principles for Defects
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« Lean/Agile SE Practices for dealing with defects:
« Strong automated testing (have tests help new detect defects)
« Continuous testing (reduce the time to detect new defects caught by tests)
» Continuous integration (reduce time to detect conflict defects)
« STOP THE LINE when a new defect gets into the main development branch

» Fixing defects in previously working software is higher priority than developing
new features!




Detecting New Failures/Missing Results: CDash Email
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FAILED (bm=1, twoif=2, twip=1, twif=2): Promoted ATDM Trilinos Builds on 2019-01-04

Builds on CDash (num/expected=33/33)

Non-passing Tests on CDash (hum=4)

Builds Missing: bm=1
Tests without issue trackers Failed: twoif=2

Failuresinred may | .
require triage!

Tests with issue trackers Passed: twip=1
Tests with issue trackers Failed: twif=2

Builds Missing: bm=1

l

issue trackers!

Missing test results!
* Failing tests without

Group

Site

Build Name

Missing Status

ATDM

waterman

Trilinos-atdm-waterman-cuda-9.2-release-debug

Build exists but no test results

Tests without issue trackers Failed (limited to 20): twoif=2

Build Name

Test Name

Details

Pass Last
30 Days

Consecutive Non- Non-pass

pass Days Last 30 Days

Issue
Tracker

Trilinos-atdm-sems-rhel6-

Belos BlockGmresPoly Epetra -

intel-opt-openmp

File Ex 0 MPI 4

Completed
(Failed)

Tests with issue trackers Failed: twif=2

. . ) Consecutive Non- Non-pass Pass Last Issue
Site Build Name Test Name Status Details
pass Days Last 30 Days 30 Days Tracker
. Trilinos-atdm-mutrino- Anasazi_Epetra BKS norestart - . Completed
mutrino || 7 Failed . 21 21 3 #3499
intel-opt-openmp-HSW test MPI 4 (Failed)




Reproducing ATDM Trilinos Builds: GitHub Issue
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C O @& GitHub, Inc. [US] | https://github.com/trilinos/Trilinos/issues/3681 Yt

Steps to Reproduce

One should be able to reproduce this failure on waterman as described in:

e https:.//github.com/trilinos/Trilinos/blob/develop/cmake/std/atdm/README.md
More specifically, the commands given for waterman are provided at:

e https://github.com/trilinos/Trilinos/blob/develop/cmake/std/atdm/README.md#waterman
The exact commands to reproduce this issue should be:

$ cd <some_build _dir>/
$ source $TRILINOS DIR/cmake/std/atdm/load-env.sh cuda-9.2-release-debug
% cmake
-GMNinja
-DTrilinos CONFIGURE OPTIONS FILE:STRING=cmake/std/atdm/ATDMDevEnv.cmake %
-DTrilinos ENABLE TESTS5=0M -DTrilinos ENABLE Intrepid2=0N %
$TRILINOS_DIR
% make NP=28

% bsub -x -Is -n 28 ctest -j2@

&

me




. How to Address Failures?
Already cleaned-up promoted builds clean:
a) Fix the failures => Best option!
b) Mark failing tests as “allow to fail” and not trigger global FAIL:
« Only for non-blocking issues
* Allows us to watch test run but not block updates of Trilinos to APPs
« Best for when someone is working to fix non-blocking failures.
c) (Temporarily) disable failing tests:
« Only for non-blocking issues
» Best for cases where no-one is going to work on fixing the failures soon.
d) Revert the commit(s) (or PR merge) causing the failure:
» Best for critical/blocking failures that can’t be fixed ASAP.

Initial failures setting up new platforms:

a) Fix the failures

b) (Temporarily) disable failing tests

c) Mark failing tests as “allow to fail” and not trigger global FAIL

 NOTE: Reverting commits is NOT an option for cleaning up failures that occur
when setting up new builds on new platforms or envs on existing platforms.




. Conclusions and Lesions Learned CASL & SNL ATDM
* Projects must set up their own forks of external repos that must be
frequently updated and define integration testing workflows

« Detecting, Traiging, and Addressing New Failures:

* Running tests using similar configurations on different systems and compilers
helps to speed up detection of new software defects.

» Effective detection and triaging requires an analysis tool that takes a broad
view of build and tests results to show trends, commonality, and history.

» Likely 90-95% of failing (Trilinos) tests don’t indicate a problem impacting a
specific customer but they hide the 5-10% that do.

* Must carefully scrutinize every failing test to detect new defects.
* Must not allow existing failures to hide new failures!

« Build and Test Systems:
» Heterogenous build and test systems significantly increase development and
maintenance costs and slow/delay integrations.

» Homogenous build and test systems across teams and software reduce
development and maintenance costs and speeds integrations. (i.e. CASL)




