
Vector Reduction/Transformation Operators

ROSCOE A. BARTLETT, BART G. VAN BLOEMEN WAANDERS,
and MICHAEL A. HEROUX
Sandia National Laboratories

Development of flexible linear algebra interfaces is an increasingly critical issue. Efficient and ex-
pressive interfaces are well established for some linear algebra abstractions, but not for vectors.
Vectors differ from other abstractions in the diversity of necessary operations, sometimes requir-
ing dozens for a given algorithm (e.g. interior-point methods for optimization). We discuss a new
approach based on operator objects that are transported to the underlying data by the linear alge-
bra library implementation, allowing developers of abstract numerical algorithms to easily extend
the functionality regardless of computer architecture, application or data locality/organization.
Numerical experiments demonstrate efficient implementation.

Categories and Subject Descriptors: D.1.5 [Programming Techniques]: Object-Oriented
Programming; G.4 [Mathematical Software]—User interfaces

General Terms: Algorithms, Design, Performance, Standardization

Additional Key Words and Phrases: Optimization, object-orientation, vectors, interfaces

1. INTRODUCTION

Many mathematical algorithms are concerned with the construction and ma-
nipulation of vectors and vector spaces. Typical situations include the construc-
tion of an orthogonal basis of vectors, or computing search directions in a multi-
dimensional space. A common characteristic of these types of algorithms is that
remarkably little detailed information about the vectors is required in order to
implement the abstract numerical algorithm (ANA). We typically do not need
to know if the vector is stored on a serial computer or partitioned across a dis-
tributed memory computer. In fact, the storage of the vector data, and even the
actual mathematical computation involving the vectors can be done remotely
from the computer that is executing the ANA.

What an ANA does require is that vectors be compatible with each other, and
that certain operations such as vector norms, scalings and transformations

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Company,
for the United States Department of Energy under Contract DE-AC04-94AL85000.
Authors’ address: Sandia National Laboratories, Albuquerque, NM 87185; email: {rabart;bartv}
@sandia.gov; mheroux@cs.sandia.gov.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2004 ACM 0098-3500/04/0300-0062 $5.00

ACM Transactions on Mathematical Software, Vol. 30, No. 1, March 2004, Pages 62–85.

Vector Reduction/Transformation Operators • 63

can be applied to the vectors. Furthermore, some classes of ANAs require a
mechanism for extending functionality, since the ANA has too many specialized
vector operations for a general-purpose vector library to implement a priori.

This ability to separate the vector functionality needed by an ANA from the
details of the vector implementation is widely known, and its importance cannot
be overstated. Sophisticated ANAs are a challenge to implement, independent
of implementation details of how vectors are stored or how vector operations
are performed. The real value of a good ANA is the careful attention to details
such as how parameters are selected to maintain orthogonality of a subspace or
to avoid stagnation or divergence. This observation has two major implications:

(1) The robustness of an ANA is essentially independent of the details of how
vectors are stored and computed.

(2) Sophisticated ANAs need a vector interface that is abstract and easily ex-
tended.

Numerous abstract vector interfaces and concrete vector implementa-
tions have been developed [Gockenbach and Symes, http://www.trip.caam.rice.
edu/txt/hcldoc/html/index.html; Heroux et al. 2003; Balay et al. http://www.mcs.
anl.gov/petsc; Pozo, http://math.nist.gov/tnt; Pozo 1996; Lumsdanie and Siek
1998b]. However, none of the existing approaches have succeeded in maximiz-
ing the potential of the separation of interface and implementation. In all ex-
isting approaches there are restrictions on the location of data or the efficient
extension of functionality, or both.

In this paper we present a simple and elegant mechanism that allows a max-
imum separation of vector functionality from the details of implementation for
a broad class of vector reduction and transformation operations. This mecha-
nism allows data storage and computation to be completely separated from the
ANA. It also allows straightforward extension of vector functionality and can
easily be incorporated into existing vector libraries. Complete source code along
with Doxygen1 generated documentation for all of the examples described in
this paper can be found at WEBSITE.2

2. BACKGROUND

We subdivide a typical numerical simulation code into three major components
to differentiate the ANA from other components that also require interfaces
for linear algebra operations (Figure 1). The first category is application (APP)
software in which the underlying data is defined for the problem. This could
be something as simple as the right hand side and matrix coefficients of a
single linear system or as complex as a finite element method for a 3-D non-
linear PDE-constrained optimization problem. The second category is linear
algebra library (LAL) software that implements basic linear algebra opera-
tions [Demmel 1997; Anderson et al. 1995; Blackford et al. 1997; Tuminaro
et al. 1999; Balay et al. http://www.mcs.anl.gov/petsc; Heroux et al. 2003]. These

1www.doxygen.org.
2WEBSITE = http://software.sandia.gov/RTOp.

ACM Transactions on Mathematical Software, Vol. 30, No. 1, March 2004.

64 • R. A. Bartlett et al.

Fig. 1. UML class diagram: Interfaces between abstract numerical algorithm (ANA), linear alge-
bra library (LAL), and application (APP) software.

types of software include primarily matrix-vector multiplication, the creation
of a preconditioner (e.g. ILU), and may even include several different types of
linear solvers. The third category is ANA software that drives the main solu-
tion process and includes such algorithms as iterative methods for linear and
nonlinear systems; explicit and implicit methods for ODEs and DAEs; and non-
linear programming (NLP) solvers [Nocedal and Wright 1999]. There are many
example software packages [Balay et al. http://www.mcs.anl.gov/petsc; Tumi-
naro et al. 1999; Heroux et al. 2003; Byrne and Hindmarsh 1999; Benson et al.
http://www-fp.mcs.anl.gov./tao] that contain ANA software.

Multiple interfaces can be identified between ANA, LAL, and APP software
components. Although we are interested in the ANA-LAL connection, other
interfaces (e.g. APP-LAL [Clay et al. 1999b], LAL-LAL [Sandia National Labs
2001]) are required for the makeup of numerical codes, and have different func-
tional requirements. The purpose of the APP-LAL interface is to allow APP
software to fill vector and matrix objects with residuals and gradients that de-
fine the underlying mathematical problem. This interface needs to be fairly
intimate and details such as global data distribution maps (in a parallel ap-
plication for example) must be exposed by the interface. In some cases, more
than one LAL may be used together, which requires a LAL-LAL interface. For
example, the preconditioner from one LAL may be used with the matrix and
vector objects from another LAL in the solution of a linear system using an
iterative linear solver. The LAL-LAL interfaces are similar to the APP-LAL
interfaces in that they must also be fairly detailed and expose information such
as data distribution on a parallel computer. For instance, for a parallel matrix
to apply itself to a vector from another LAL, the vector must expose its map of
local to global elements and give explicit access to the local vector data. An even
more intimate interface must be exposed by a parallel matrix object in order to
construct a preconditioner from another LAL.

ACM Transactions on Mathematical Software, Vol. 30, No. 1, March 2004.

Vector Reduction/Transformation Operators • 65

The focus of our work is the ANA-LAL interface because the realization of
this approach can potentially have considerable software development and code
efficiency impact. The purpose of the ANA-LAL interface is to provide numerical
algorithms with appropriate linear algebra functionality, preferably indepen-
dent of data mapping and without the involvement of the LAL developer. The
central idea is based on operator objects that are transported to the underlying
data by the linear algebra library implementation where they are applied on
an element-wise basis. This approach provides developers of abstract numer-
ical algorithms with the ability to easily extend the functionality of a vector
interface regardless of computer architecture, application, data locality or or-
ganization of the underlying data. The design of the ANA-LAL interface must
consider the diversity of application areas, computing environments, and con-
figurations. For example, in a large-scale seismic inversion problem, gigabytes
of data are stored “out-of-core” and are repetitively read from disk, operated
on, and then written back to disk. Alternatively, the main focus for large-scale
scientific computing has been to write SPMD (single program, multiple data)
software that runs on large parallel computers, and more recently, client-server
and grid computing are being considered where multiple resources may be
used to solve a single coupled problem. Issues associated with these different
data mappings and computing environments are addressed through our new
approach.

Trying to abstract the details of linear algebra data structures and compu-
tations away from ANAs is not a new or recent idea. The general specification
of the ANA-LAL and ANA-APP interfaces described in Heinkenschloss and
Vicente [1999] allows the development of flexible ANA software. However, this
specification does not deal with the issues associated with the locality and map-
ping of vector data. In addition, none of the current vector-interface approaches
(see Section 3.2) provide a sufficient means by which ANA and LAL software
can be adequately decoupled so that the work required to glue a particular ANA
to a LAL is sufficiently low. Here we describe a new approach by which a devel-
oper of an ANA can in fact unilaterally add the implementation for a new vector
operation and then have it automatically supported by any LAL implementa-
tion for any runtime configuration. This is possible through a specification for
user-defined vector operators and the addition of a single method to a vector
interface that every LAL implementation can easily support.

3. VECTORS IN NUMERICAL SOFTWARE AND CHALLENGES IN
DEVELOPING ABSTRACT INTERFACES

Vectors provide the primary foundation for the ANA-LAL and ANA-APP inter-
faces. Beyond transporting vector objects back and forth to the APP and LAL
interfaces, ANA also need to perform various vector reduction (e.g. norms, dot
products) and transformation (e.g. vector addition, scaling) operations. In ad-
dition, many specialized “nonstandard” vector operations must be performed.
Examples of non-standard operations are presented below to help motivate our
design, followed by a discussion of how current and established approaches
would attempt to handle these non-standard operations.

ACM Transactions on Mathematical Software, Vol. 30, No. 1, March 2004.

66 • R. A. Bartlett et al.

3.1 Variety of Vector Operations Needed

Perhaps the primary distinction between vectors and other linear algebra ob-
jects is the large number of non-standard operations that a complex ANA re-
quires. In addition to the 15 BLAS [Dongarra et al. 1988] operations, many
other types of operations need to be performed. For example, some of the non-
standard operations an optimization algorithm (e.g. OOQP [Gertz and Wright
2001]) may perform are:

yi =

ymin − yi if yi < ymin

ymax − yi if yi > ymax

0 if ymin ≤ yi ≤ ymax

for i = 1 · · ·n, (1)

α ← {max α : x + αd ≥ β}, (2)
γ ← (x + αp)T (y + αq). (3)

The interior-point NLP algorithm described in Dennis et al. [1998] performs
several more unusual vector operations, such as

di ←

(b− u)1/2

i if wi < 0 and bi < +∞
1 if wi < 0 and bi = +∞

(u− a)1/2
i if wi ≥ 0 and ai > −∞

1 if wi ≥ 0 and ai = −∞

for i = 1 · · ·n. (4)

3.2 Current Approaches to Developing Interfaces for Vectors
and Vector Operations

Currently there are three established approaches to abstracting vectors from
ANA software that may be used to address special and unusual vector opera-
tions. Below we describe each of these and discuss their limitations.

The first approach (I) is to allow an ANA to access the vector data in some
controlled way that enables the ANA to perform required operations. This is
by far the most common approach and in the case of parallel numerical codes
using SPMD this is currently the preferred method [Heroux et al. 2003; Balay
et al. http://www.mcs.anl.gov/petsc; Clay et al. 1999a]. This approach however
assumes that vector data is readily available in every process where the ANA
runs. Otherwise, moving large segments of vector data to processes where the
ANA is running can cause considerable inefficiencies. For instance, in the case
of a client-server architecture, copies of vector data would have to be commu-
nicated from the client to the server causing considerable inefficiencies. Ap-
proach I potentially provides for an efficient development environment, pro-
vided data movement is not an issue and assuming the ANA algorithms do
not need to be reused in other computing environments. Even in an SPMD
environment, this approach is not without difficulties (e.g. ghost elements and
reduction operations).

More recently, a second approach (II) has been used where each specific ANA
defines its own customized abstract LAL interface and then leaves it up to the
end user to provide the implementations [Lumsdanie and Siek 1998a; Gertz
and Wright 2001; Cai 1999]. ITL [Lumsdanie and Siek 1998a] uses the C++

ACM Transactions on Mathematical Software, Vol. 30, No. 1, March 2004.

Vector Reduction/Transformation Operators • 67

template mechanism and requires compile-time polymorphism while OOQP
[Gertz and Wright 2001] and DiffPack [Cai 1999] use C++ classes and virtual
functions and allow for runtime polymorphism. While this approach is more
flexible than approach I and abstracts away the data mapping issues, it simply
passes the interfacing problem on to the end user, who is forced to implement
the required operations given an existing LAL. For example, OOQP includes
more than 30 vector operations, many of which must be implemented from
scratch for a new LAL or computing configuration.

Finally, a third approach (III) constructs a general linear algebra inter-
face that tries to anticipate what fundamental or “primitive” operations will
be needed. An ANA is expected to implement more specialized operations by
stringing together a set of primitives. In theory, this approach allows ANA and
LAL software to be developed and maintained independently and be used to-
gether with very little extra work. Such an approach was taken by the design-
ers of the Hilbert Class Library (HCL) version 1.0 [Gockenbach and Symes
http://www.trip.caam.rice.edu/txt/hcldoc/html/index.html] and was originally
motivated by out-of-core data sets even though it is applicable to any com-
puting environment. Even though approach III is most promising, it still has
three primary shortcomings. First, stringing together a set of primitive opera-
tions requires temporary copies and can create an inefficient implementation.
Second, this approach requires the standardization of the primitive operations
that are part of the interface. Consequently, the developer of an ANA cannot
add a new method to an existing LAL interface and expect it to be automatically
supported by LAL implementations. Third, nonstandard operations are often
difficult to develop through the use of a finite number of primitives.

To demonstrate how a series of primitive vector operations can be used
to implement a more specialized operation, consider the vector reduction op-
eration (2). This operation could be performed with six temporary vectors
u, v, w, y , z ∈ IRn and the following six primitive vector operations:

−xi → ui, ui + β → vi, vi/di → wi, 0→ yi, max {wi, yi} → zi,
min

{
zi, i = 1 · · ·n}→ α.

(5)

Many other vector operations can be performed using primitives. However,
it is difficult to see how operations like (1) and (4) could be implemented with
general purpose primitive vector operations. A large number of primitive oper-
ations need to be included in a generic vector interface in order to implement
most of the required vector operations. For example, the vector interface in HCL
1.0 contains more than 50 operations and still cannot accommodate some of the
above example vector/array operations.

Another problem is that, in a parallel program, stringing primitives together
can result in a serial bottleneck. For instance, in ISIS++ [Clay et al. 1999a], the
combined reduction operation (6) was implemented for the quasi-minimum-
residual (QMR) iterative solver.

{α, γ , ξ, ρ , ε} ← {(xT x)1/2, (vT v)1/2, (wT w)1/2, wT v, vT t} (6)

All five of the reduction operations in (6) can be performed in one pass through
the vector data (four vector reads) and one global reduction. In contrast, if we

ACM Transactions on Mathematical Software, Vol. 30, No. 1, March 2004.

68 • R. A. Bartlett et al.

must rely on primitive LAL methods for computing each reduction separately,
we would need at least seven vector reads and five global reductions. It is
certainly possible to add an operation like (6) to a LAL, but such an ANA-
specialized operation cannot be added to a generic LAL interface without the
direct support of the developers of all the LALs used with the ANA.

4. VECTOR REDUCTION/TRANSFORMATION OPERATORS

4.1 Introduction to Vector Reduction/Transformation Operations

Our design addresses all the above described limitations associated with ap-
proaches I, II, and III. The key design strategy consists of passing user-defined
operations to vector objects and having the vector implementations apply the
operations to the vector data. ANA developers are therefore not limited to the
use of primitives, can freely develop their vector operator implementations,
and do not have to depend on temporary copies. In addition to an efficient
implementation, this approach is independent of the underlying data map-
ping of the vectors. The design allows ANA developers to create any vector
reduction/transformation operator (RTOp) that is equivalent to the following
element-wise operators:

element-wise transformation : opT
(
i, v0

i · · · vp−1
i , z0

i · · · zq−1
i

) → z0
i · · · zq−1

i , (7)

element-wise reduction : opR
(
i, v0

i · · · vp−1
i , z0

i · · · zq−1
i

) → β, (8)

reduction of intermediates : opRR(β̂, β̃) → β̃, (9)

where v0 · · · vp−1 ∈ IRn are p non-mutable input vectors; z0 · · · zq−1 ∈ IRn are
q mutable input/output vectors; and β is a reduction target object that may be
a simple scalar, a more complex non-scalar (e.g. {α, γ , ξ, ρ , ε}) or NULL. In the
most general case, the ANA can define an operator that will simultaneously
perform multiple reduction and transformation operations involving a set of
vectors. Simpler operations can be formed by setting p = 0, q = 0 or β = NULL.
For example, reduction operations over one vector argument, such as vector
norms (‖v‖), are defined with p = 1, q = 0 and β = {scalar}. With this design, all
of the standard BLAS operations, the example vector operations in (1)–(6) and
many more vector operators can be expressed. The key to optimal performance
is that the vector implementation applies (7) and (8) together on an entire set
of sub-vectors (for elements i = a · · ·b) at once

op
(
a, b, v0

a:b · · · vp−1
a:b , z0

a:b · · · zq−1
a:b , β

)→ z0
a:b · · · zq−1

a:b , β. (10)

In this way, as long as the size of the sub-vectors is sufficiently large, the cost
of performing a function call to invoke the operator will be insignificant com-
pared to the cost of performing the computations within the operator. In a par-
allel distributed vector, op(· · ·) is applied to the local sub-vectors on each proces-
sor. The only communication between processors is to reduce the intermediate
reduction objects op(β̂, β̃)→ β̃ (unless β = NULL, then no communication is re-
quired). It is important to understand that it is the vector implementation that
decides how to best segment the vector data into chunks that are passed to the
user-defined operator that results in the most efficient implementation possible.

ACM Transactions on Mathematical Software, Vol. 30, No. 1, March 2004.

Vector Reduction/Transformation Operators • 69

Fig. 2. UML class diagram: vector reduction/transformation operators.

On most machines, the dominant cost of performing a vector operation is
the movement of data to and from main memory [Demmel 1997]. This is espe-
cially true for out-of-core vectors. Therefore, performing multiple operations on
a vector at the same time such as in (6) will be faster than performing them
separately in most computing environments.

It is important to note that the type of element-wise operators described
in (7)–(9) cannot be used to implement general linear and nonlinear vector
operators. For example, a general linear operator A

z = op(v) = Av

computes the ith element of the output vector z as a linear combination of per-
haps all of the right-hand-side vector elements in v. In a distributed-memory
environment, this requires careful handling of vector data, which results in
the use of ghost elements and the targeted communication of potentially large
amounts of vector data. For this reason, the element-wise operators defined in
(7) explicitly state this element-wise requirement. As is clearly seen in (7), the
ith element in the input/output vectors z can only be computed using infor-
mation from the ith elements in the vectors v and z and from no other vector
elements. It is impossible to design an efficient operator interface that allows
non-element-wise transformations that does not also require a detailed knowl-
edge of the computing environment, the layout of vector data and functionality
for communicating vector data.

4.2 An Object-Oriented Design for Reduction and Transformation Operators

Here an object-oriented [Booch et al. 1999; Gamma et al. 1995] design for vector
reduction/transformation operators is presented, which is based on the “Visi-
tor” pattern [Gamma et al. 1995]. Figure 2 shows the general structure of the
design. At the core of the design is an interface for vector operators called
RTOp for which different ANA-specific operator types can be implemented. This
operator interface includes methods for operations (9) and (10). A vector inter-
face AbstractVector includes a method that accepts user-defined RTOp operator
objects (see WEBSITE for the special behavior of this method). A vector imple-
mentation applies operators in an appropriate manner and returns reduction
objects (if non-NULL). Examples of a few different concrete vector subclasses
are shown in Figure 2. The reason that this design pattern is called “Visitor” is
that an “ObjectStructure” takes a client’s user-defined visitor object and then

ACM Transactions on Mathematical Software, Vol. 30, No. 1, March 2004.

70 • R. A. Bartlett et al.

Fig. 3. UML interaction diagram: Applying an RTOp operator for an out-of-core vector.

decides how this object will visit all of the “Elements” containing the data. The
key is that the client’s user-defined operations are taken to the data in a trans-
parent way, the data is not presented to the client (as in the “Iterator” design
pattern).

The mechanism by which a vector implementation applies a user-defined
operator depends on the computing environment. The following three scenarios
show how an ANA code can be used with the same operator implementations
in three different computing configurations: (i) out-of-core, (ii) SPMD, and (iii)
client-server. The ANA code does not need to be recompiled for any scenario
and the LAL implementations can be changed at run time.

(i) For out-of-core data sets (Figure 3), the vector implementation reads the
data from disk one chunk at a time. The operator is called to transform the
chunks and/or compute a reduction object. The transformed chunks are then
written back to disk and the computed reduction object is returned. The vector
implementation applies the operator in the same manner regardless of the
operator’s implementation.

(ii) For an SPMD environment (Figure 4), the ANA runs in parallel in each
process. Once the ANA in each process gives the operator object to the vec-
tor object, the vector implementation in each process applies the user-defined
operator to only the local elements owned by the process. The intermediate
reduction objects in each process are then globally reduced (i.e. using a single
call to MPI Allreduce(...)) and the final reduction object is returned. If the
operator has a NULL reduction object, then no global reduction is performed
and no communication is required.

(iii) In the client-server environment, the ANA runs only in the client process
while the APP and LAL run in separate processes on the server. In this scenario,

ACM Transactions on Mathematical Software, Vol. 30, No. 1, March 2004.

Vector Reduction/Transformation Operators • 71

Fig. 4. UML collaboration diagram: Applying an RTOp operator for an distributed parallel vector.

the operator object must be transported from the client to the server, where it
is applied to the local vector data in each process. Then the reduction object is
returned to the ANA on the client. The client-server configuration demonstrates
the fundamental difference of this design from current approaches; the operator
is taken to the data, the data is not moved to the operator. The application of an
operator in a client-server configuration is involved and the reader is referred
to Bartlett [2001] for additional details.

There are several advantages to the RTOp approach. Specifically:

(1) LAL developers need only implement one operation—apply op(...)—and
not a large collection of primitive vector operations.

(2) ANA developers can implement specialized vector operations without need-
ing any support from LAL maintainers. Note that common vector operators
can be shared by the numerical community and need not be implemented
from scratch by each set of developers of an ANA code.

(3) ANA developers can optimize time consuming vector operations on their
own for the platforms they work with.

(4) Reduction/transformation operators are more efficient than using primitive
operations and temporary vectors (see Section 6).

(5) ANA-appropriate vector interfaces that require built-in standard vector
operations (i.e. axpy and norms) can use RTOp operators for the default
implementations of these operations. In this way, some ANA developers
may not ever need to work with RTOp operators directly in order to apply
standard vector operations, given a well written vector interface. In other
words, the RTOp approach need not inconvenience ANA developers in any
way.

ACM Transactions on Mathematical Software, Vol. 30, No. 1, March 2004.

72 • R. A. Bartlett et al.

5. AN IMPLEMENTATION OF POLYMORPHIC REDUCTION AND
TRANSFORMATION OPERATOR OBJECTS IN C AND C++

The RTOp interface shown in Figure 2 can be implemented in a variety of differ-
ent programming languages. Here we describe our initial implementations C
and C++. Because the design is based on object-oriented principles the obvious
implementation language is C++. However, the use of C provides efficient sup-
port for the use of mixed languages and it makes the interface portable across
many computer architectures. Also, because C is perhaps the most popular de-
velopment language, our approach may have a better chance of becoming a
common specification. The basic reduction and transformation operator inter-
faces are fairly simple (i.e. single inheritance) and are therefore not difficult
to implement in C. It must be emphasized that the only part of this imple-
mentation that must be adopted in order to realize the primary benefits of the
new approach is contained in the single, relatively small, header file RTOp.h.
The rest of the code at WEBSITE is strictly included for convenience and for
demonstration purposes. The interfaces have been designed to be interopera-
ble where operators implemented in C can be used through a C++ interface and
visa-versa.

The most straightforward method to implement polymorphic objects and
virtual functions in C is to reproduce the internal mechanics of a C++ compiler.
To illustrate this technique, consider the C struct for reduction/transformation
operators RTOp RTOp:

struct RTOp_RTOp {
void* obj_data;
RTOp_RTOp_vtbl_t* vtbl;

};

In the above struct, obj data is a void pointer to object instance specific
data and vtbl is a pointer to a virtual function table. The address stored in
the pointer RTOp RTOp::vtbl uniquely determines the concrete type of the
operator. The form of the data in RTOp RTOp::obj data must be compatible with
the functions that are pointed to in the virtual function table RTOp RTOp::vtbl.
The struct for the virtual function table stores the pointers to the functions
that are called at runtime, and creates the appropriate polymorphic behavior.
For RTOp RTOp, the virtual function table struct is defined as:

struct RTOp_RTOp_vtbl_t {
const struct RTOp_obj_type_vtbl_t *obj_data_vtbl;
const struct RTOp_obj_type_vtbl_t *reduct_vtbl;
const char *op_name;
int (*reduct_obj_reinit)(...);
int (*apply_op)(..., RTOp_ReductTarget reduct_obj);
int (*reduce_reduct_objs)(...);
int (*get_reduct_op)(...);

};

In the above virtual function table, apply op is a pointer to a function
that will execute (10). Any reduction operation performed will be added to the
reduct obj argument. To simplify calling the apply op function, a client can

ACM Transactions on Mathematical Software, Vol. 30, No. 1, March 2004.

Vector Reduction/Transformation Operators • 73

use the following function:

int RTOp_apply_op(const struct RTOp_RTOp* op
,const int num_vecs, const struct RTOp_SubVector sub_vecs[]
,const int num_targ_vecs, const struct RTOp_MutableSubVector targ_sub_vecs[]
,RTOp_ReductTarget reduct_obj)

{
return op->vtbl->apply_op(op->obj_data,num_vecs,sub_vecs

,num_targ_vecs,targ_sub_vecs,reduct_obj);
}

A vector implementation invokes a vector operation on a set of sub-vectors
sub vecs[] and targ sub vecs[] given a reduction/transformation operator
object op by calling:

RTOp_apply_op(op, num_vecs, sub_vecs, num_targ_vecs, targ_sub_vecs, reduct_obj);

In this way, the function RTOp apply op(op,...) acts polymorphically with
respect to an operator object op.

The struct RTOp RTOp vtbl t contains several other types of fields. The
fields obj data vtbl and reduct vtbl are actually pointers to two other virtual
function tables of type RTOp obj type vtbl t. The purpose of these virtual
function tables is to aggregate the methods needed to create, initialize, destroy,
externalize and internalize the state of the operator and reduction objects. This
design allows the same object structure to be used for both types of objects.
The fields in the struct for this virtual function table are:

struct RTOp_obj_type_vtbl_t {
int (*get_obj_type_num_entries)(..., int* num_values, int* num_indexes

,int* num_chars);
int (*obj_create)(..., void** obj);
int (*obj_reinit)(..., void* obj);
int (*obj_free)(..., void** obj);
int (*extract_state)(..., void* obj, int num_values, RTOp_value_type value_data[]

,int num_indexes, RTOp_index_type index_data[], int num_chars
,RTOp_char_type char_data[]);

int (*load_state)(..., int num_values, const RTOp_value_type value_data[]
,int num_indexes, const RTOp_index_type index_data[], int num_chars
,const RTOp_char_type char_data[],void ** obj);

};

The ability to externalize and load an object’s state as a set of arrays
of simple data types (i.e. value data[], index data[] and char data[]) is
essential for transporting and working with objects in a heterogeneous en-
vironment (i.e. client-server and heterogeneous MPI). The methods extract-
state(...) and load state(...) are esential for the use of MPI to perform

global reductions efficiently and to be able to transport RTOp operators over a
network.

The remaining members in the struct RTOp RTOp vtbl t are simple function
pointers. The function pointed to by reduce reduct objs is used to perform (9).
Finally, the function pointed to by get reduct op returns a pointer to another
function that can be used by MPI as a user defined reduction operation with
MPI Reduce(...) and MPI Allreduce(...). This is the only place where RTOp
must specifically adhere to the MPI standard. But this function could be used
by any implementation to perform the needed intermediate reduction opera-
tions. When an operator does not return a reduction target object (i.e. performs

ACM Transactions on Mathematical Software, Vol. 30, No. 1, March 2004.

74 • R. A. Bartlett et al.

Table I. Selected Reduction/Transformation Operator Classes Implemented in C

RTOp operators C Source files (*.c,*.h)
z0

i ← α, for i = 1 · · ·n RTOp TOp assign scalar.*

z0
i ← v0

i , for i = 1 · · ·n RTOp TOp assign vectors.*

z0
i ← αv0

i + z0
i , for i = 1 · · ·n RTOp TOp axpy.*

z0
i ← random(l,u), for i = 1 · · ·n RTOp TOp random vector.*

z0
i ← v0

i /v
1
i , for i = 1 · · ·n RTOp TOp ele wise divide.*

z0
k ← α RTOp TOp set ele.*

z0
i ←−v1

i + µv0
i + αv0

i v1
i v2

i , for i = 1 · · ·n RTOp TOp multiplier step.*

α← v0
k RTOp ROp get ele.*

α← (v0)T v1 RTOp ROp dot prod.*

γ ← max{α | v0 + αv1 ≥ β} RTOp ROp max step.*

α←∑n
i=1 v0

i RTOp ROp sum.*

α←∑n
i=1

{
log(v0

i − v1
i)+ log(v2

i − v0
i)
}

RTOp ROp log bound barrier.*

a transformation only), some of the above function pointers can be NULL (see
Appendix A).

As mentioned earlier, there is also a compatible C++ interface called
RTOpPack::RTOp. There are several advantages of the C++ interface: operator
subclass development is more straightforward, errors are handled with C++
exceptions (and not with tedious error codes), and memory management is
easier due to C++ constructors and destructors. An excerpt from its specifica-
tion that shows similar syntax and functionality as the C specification is given
below:

namespace RTOpPack {
class RTOp {
public:

...
virtual void apply_op(...,RTOp_ReductTarget reduct_obj) const = 0;
virtual void reduce_reduct_objs(...) const;
virtual void get_reduct_op(...) const;
...

};
}

A complete example program at WEBSITE includes an example vector inter-
face, and different vector implementations (including an MPI implementation
for SPMD programs). Also, several simple and unusual concrete reduction and
transformation operator classes have already been written (in C) and tested
that are available for general use, which are described in the next section.

5.1 Examples of Concrete RTOp Operators

Source code (in C) for several simple and unusual concrete reduction and trans-
formation operator classes is available for general use and to provide templates
from which other operators can easily be built.

Table I shows some of the reduction/transformation operators that are al-
ready implemented. If a needed operator class uses an already implemented
data type for its object instance data and reduction target object, then such an
operator class is easy to implement. For example, consider the assignment-to-
scalar transformation operator z0

i ← α, for i = 1 · · ·n in Table I. The header

ACM Transactions on Mathematical Software, Vol. 30, No. 1, March 2004.

Vector Reduction/Transformation Operators • 75

file and source files (stripped of comments) are simple enough and are given
in Appendix A. This simple transformation operator class contains all the fea-
tures needed for use in any computing environment. This subclass includes
a constructor, destructor and other manipulation functions. The static im-
plementation function RTOp TOp assign scalar apply op(...) for this opera-
tor is trivial and only contains one significant executable statement (the for
loop). This operator class uses a simple scalar object for its instance data
(to hold α). This type is so common for both object instance data and reduc-
tion target objects that the virtual function table for it has been implemented
in a separate source file so that it can be reused. The virtual function ta-
ble RTOp obj value vtbl is declared in the header file RTOp obj value vtbl.h
and its functions are defined in the source file RTOp obj value vtbl.c. Since
this operator class does not perform a reduction operation, it uses a prede-
fined virtual function table RTOp obj null vtbl that simply returns zero for
the size of the object. With a NULL reduction target object, the last two function
pointers in the struct RTOp RTOp vtbl t are not needed and are simply made
NULL.

Several virtual function tables for common data types have been imple-
mented. However, the data types for some operators are unusual enough that
these functions are implemented within the source file for the operator class.
For example, see RTOp ROp get sub vector.c.

A considerable amount of boiler-plate code is required to create a new RTOp
subclass. In order to ease the development process, a Perl script has been created
that can be used to automatically create complete RTOp subclass implementa-
tions (in C) for many different types of specialized vector operations. Appendix
B describes the mechanics of the perl script in more detail and shows the results
of applying this script for two examples.

6. COMPUTATIONAL RESULTS

Conducting numerical experiments exclusively with low level linear algebra
and some communication from reduction operations is somewhat predictable.
However, we verify our design with two basic numerical experiments to validate
an efficient implementation, and show better performance than any primitive
stringing process.

In the first example, a test program based on a mock QMR algorithm is used
to investigate the impact of using five primitive operations versus the all-at-
once operator in (6). A total of 128 processors on CPlant [Riesen et al. 1999] was
used in SPMD mode. The ratio of computation to communication was varied by
manipulating the number of local vector elements per process (local dim) and
the number of axpys per reduction (num axpys). When (local dim)(num axpys)
is sufficiently large, computation dominates and there is very little difference
between the two implementations. However, when (local dim)(num axpys) is
smaller, the all-at-once operator (with a single global reduction versus 5 global
reductions) was noticeably more efficient. Figure 5 shows the ratio in runtimes
for the two approaches. These results indicate that for nontrivial problem sizes
the savings in runtime can be significant.

ACM Transactions on Mathematical Software, Vol. 30, No. 1, March 2004.

76 • R. A. Bartlett et al.

Fig. 5. Ratio of total process CPU times for using six primitive operations versus the all-at-once
operator for the operation in (6) (number of processes = 128, number elements per process = 50,
500, 5000, 50000 and num axpys = 1 . . . 400).

Fig. 6. Ratio of total process CPU times for using five primitive reductions versus the all-at-once
operator for the operation in (2) and (5). The times for the primitive operation approaches with
cached temporary vectors and dynamically allocated temporary vectors are both given.

In the second example, the impact of multiple access of the same vector data
and the creation of temporaries are investigated. The operation in (2) is used
for the comparison for which the implementation using primitives is shown in
(5). Figure 6 shows the ratio of CPU times for the all-at-once RTOp operator
implementation versus separate primitive vector implementations. The C++
code is written using explicit loops and therefore removes any function call over-
head that would otherwise have a dramatic impact for small vectors. There are
two variants of the string of primitive vector operations implemented: one that
uses preallocated temporary vectors (cached temporaries) and one that uses
newly allocated temporary vectors for every evaluation (dynamic temporaries).
Vector data is allocated using std::valarray<double> v(n) where n is the size
of the vectors. Note that std::valarray<> is not supposed to call constructors
on the vector data upon construction so in principle the construction of the vec-
tor object could be an O(1) operation (this is not true for std::vector<>). This
is strictly a serial program so there is no communication overhead to consider.
The vector operators are performed several times in a loop and the ratios of
runtimes are computed. The test program was compiled using GCC 3.1 under
Redhat Linux 7.2 and run on a 1.7 GHz Pentium IV processor. As shown in
Figure 6, even without the impact of multiple dynamic memory allocations, the

ACM Transactions on Mathematical Software, Vol. 30, No. 1, March 2004.

Vector Reduction/Transformation Operators • 77

implementation using the six primitive vector operations only achieved about
35% of the speed of the all-at-once operator. When naive dynamic allocations
where used, the ratio of runtime dropped to about 20%. This example clearly
shows the deterioration in runtime performance that the vector primitives ap-
proach can have over the all-at-once RTOp approach.

7. CONCLUSIONS AND FUTURE WORK

Growing complexities associated with computational environments, applica-
tion domains, and data mapping place difficult demands on the development of
numerical algorithms. The vector operator interface proposed here addresses
these issues and allows the development of many types of complex abstract
numerical algorithms that are highly flexible and reusable.

Advanced object-oriented design patterns were used to develop the RTOp
interface and somewhat predictable numerical experiments demonstrate high
efficiency in comparison to using a combination of primitives. Also, simple scal-
ability tests confirm minimal serial overhead for a large number of processors.
Though the numerical efficiencies are noteworthy, the main advantages of this
approach are development efficiencies and functionality.

In summary, there are five primary advantages to this approach:

(1) LAL developers need only implement one operation—apply op(...)—and
not a large collection of primitive vector operations.

(2) ANA developers can implement specialized vector operations without need-
ing any support from LAL maintainers.

(3) ANA developers can optimize time consuming vector operations on their
own for the platforms they work with.

(4) Reduction/transformation operators are more efficient than primitive oper-
ations and temporary vectors (see Section 6).

(5) ANA-appropriate vector interfaces that require built-in standard vector
operations (i.e. axpy and norms) can use RTOp operators for the default
implementations of these operations.

A large set of vector operators are already available, but more significant is
the flexibility to extend functionality. In addition, the extensions are indepen-
dent of computer architecture and data mapping. By allowing the user to define
reduction/transformation operators, all of the vector operations previously men-
tioned and many more can be efficiently implemented without requiring any
temporary vectors.

The success of this approach relies on the adoption of the relatively small
interface for reduction/transformation operators that is contained in RTOp.h.
Future work will include the use of the RTOp approach in a client-server en-
vironment, which will specifically address development issues and bottlenecks
related to distributed computing, heterogeneous networks, and grid computing.

This design for vector reduction and transformation operators has been used
to design very powerful ANA-LAL and ANA-APP (for nonlinear programming)
interfaces in C++ called AbstractLinAlgPack and NLPInterfacePack respec-
tively. These interfaces in turn have been used to upgrade a successive quadratic

ACM Transactions on Mathematical Software, Vol. 30, No. 1, March 2004.

78 • R. A. Bartlett et al.

programming optimization package MOOCHO (a.k.a. rSQP++ [Bartlett 2001])
to allow fully transparent parallel linear algebra and arbitrary implementa-
tions of linear solvers (direct and iterative).

APPENDIX

A. IMPLEMENTATION OF “ASSIGNMENT TO SCALAR” RTOp
TRANSFORMATION OPERATOR

// ///
// RTOp_TOp_assign_scalar.h

#ifndef RTOP_TOP_ASSIGN_SCALAR_H
#define RTOP_TOP_ASSIGN_SCALAR_H

#include "RTOpPack/include/RTOp.h"

#ifdef __cplusplus
extern "C" {
#endif

extern const struct RTOp_RTOp_vtbl_t
RTOp_TOp_assign_scalar_vtbl;

int RTOp_TOp_assign_scalar_construct(RTOp_value_type alpha,
struct RTOp_RTOp* op);

int RTOp_TOp_assign_scalar_destroy(struct RTOp_RTOp* op);
int RTOp_TOp_assign_scalar_set_alpha(RTOp_value_type alpha,

struct RTOp_RTOp* op);

#ifdef __cplusplus
}
#endif

#endif // RTOP_TOP_ASSIGN_SCALAR_H

// ///
// RTOp_TOp_assign_scalar.c

#include "RTOpStdOpsLib/include/RTOp_TOp_assign_scalar.h"
#include "RTOpPack/include/RTOp_obj_value_vtbl.h"
#include "RTOpPack/include/RTOp_obj_null_vtbl.h"

static int RTOp_TOp_assign_scalar_apply_op(
const struct RTOp_RTOp_vtbl_t* vtbl, const void* obj_data
,const int num_vecs, const struct RTOp_SubVector vecs[]
,const int num_targ_vecs
,const struct RTOp_MutableSubVector targ_vecs[]
,RTOp_ReductTarget targ_obj)

{
RTOp_value_type alpha = *((RTOp_value_type*)obj_data);
RTOp_index_type z_sub_dim = targ_vecs[0].sub_dim;
RTOp_value_type *z_val = targ_vecs[0].values;
ptrdiff_t z_val_s = targ_vecs[0].values_stride;
RTOp_index_type k;
if(num_vecs != 0 || vecs != NULL)

return RTOp_ERR_INVALID_NUM_VECS;
if(num_targ_vecs != 1 || targ_vecs == NULL)

return RTOp_ERR_INVALID_NUM_TARG_VECS;
for(k = 0; k < z_sub_dim; ++k, z_val += z_val_s)

*z_val = alpha;
return 0;

}

const struct RTOp_RTOp_vtbl_t RTOp_TOp_assign_scalar_vtbl =
{

&RTOp_obj_value_vtbl
,&RTOp_obj_null_vtbl

ACM Transactions on Mathematical Software, Vol. 30, No. 1, March 2004.

Vector Reduction/Transformation Operators • 79

,"TOp_assign_scalar"
,NULL
,RTOp_TOp_assign_scalar_apply_op
,NULL
,NULL

};

int RTOp_TOp_assign_scalar_construct(RTOp_value_type alpha
,struct RTOp_RTOp* op)

{
op->vtbl = &RTOp_TOp_assign_scalar_vtbl;
op->vtbl->obj_data_vtbl->obj_create(NULL,NULL

,&op->obj_data);
((RTOp_value_type)op->obj_data) = alpha;
return 0;

}

int RTOp_TOp_assign_scalar_destroy(struct RTOp_RTOp* op)
{

op->vtbl->obj_data_vtbl->obj_free(NULL,NULL,&op->obj_data);
op->vtbl = NULL;
return 0;

}

int RTOp_TOp_assign_scalar_set_alpha(RTOp_value_type alpha
,struct RTOp_RTOp* op)

{
((RTOp_value_type)op->obj_data) = alpha;
return 0; // success?

}

B. AUTOMATIC GENERATION OF RTOP SUBCLASSES IN C

To make the process of creating an RTOp C subclass easier and because there
is boiler-plate code that is needed, a Perl script called new rtop.pl has been
implemented. This script automates most of the work required to create a new
RTOp subclass. This script prompts the user for the answers to a set of questions
about the operation being performed. In many cases, the output header and
source files will be ready to compile and use. In other cases, the user will have
to finish the implementation.

Many different types of specialized operators, including all of the example
operators in (1)–(4), can be completely implemented with the script. Below, we
show the use of this script in generating the source code for C RTOp subclasses
for the example specialized operators in (2) and (4).

B.1 Example Transformation Operator

The Perl script is first demonstrated on the transformation operator in (4).
Note that all of the data required to perform the operation is contained in the
four input vectors a, b, u and w. The only exception is the value of ∞, which
may be platform dependent. Therefore, we will allow the ANA to define the
value of∞ as an operator object instance data member called inf val. Before
running the script, the vector arguments are ordered and mapped into the
generic names v0 = a, v1 = b, v2 = u, v3 = w, z0 = d and then (4) is restated

ACM Transactions on Mathematical Software, Vol. 30, No. 1, March 2004.

80 • R. A. Bartlett et al.

as:

z0
i ←

(vl − v2)1/2

i if v3
i < 0 and v1

i < +∞
1 if v3

i < 0 and v1
i = +∞

(v2 − v0)1/2
i if v3

i ≥ 0 and v0
i > −∞

1 if v3
i ≥ 0 and v0

i = −∞

. (11)

We will call this operator subclass TOp trice diag scal. The interactive ses-
sion with the script new rtop.pl is shown below:

*** Create a new C RTOp operator subclass ***

1) What is the name of your operator subclass?
: TOp_trice_diag_scal

2) Is your operator coordinate invariant?
[y] or [n] : y

3) Give the number of nonmutable input vectors (vi, i=0...num_vecs-1)?
: 4

4) Give the number of mutable input/output vectors (zi, i=0...num_targ_vecs)?
: 1

5) Does your operator require extra data which is not in the input vectors?
[y] or [n] : y

Choose the structure of the data:
1: {index}
2: {value}
3: {value,index}
4: {value,value}
5: other
Choose 1-5? 2

Give name for {value} member?
: inf_val

6) Does your operator perform a reduction?
[y] or [n] : n

7.a) Does your element-wise operation(s) need temporary variables?
[y] or [n] : n

7.c) Give the C statement(s) for element-wise transformation operation?
You can choose:

Non-mutable operator data (don’t change here) : inf_val
Non-mutable vector elements (don’t change here) : v0, v1, v2, v3
Mutable vector elements (must modify here) : z0

? if(v3 < 0 && v1 < +inf_val)
? z0 = sqrt(v1-v2);
? else if(v3 < 0 && v1 >= +inf_val)
? z0 = 1;
? else if(v3 >= 0 && v0 > -inf_val)
? z0 = sqrt(v2-v0);
? else if(v3 >= 0 && v0 <= -inf_val)
? z0 = 1;
?

The implementation files RTOp_TOp_trice_diag_scal.h and
RTOp_TOp_trice_diag_scal.c should be complete!

ACM Transactions on Mathematical Software, Vol. 30, No. 1, March 2004.

Vector Reduction/Transformation Operators • 81

After the script creates these files, they just need to be integrated into the
build system (i.e. added to the makefile) and compiled. The only part of the
implemented RTOp subclass that is more than just boiler-plate code is the loop
that actually performs the element-wise transformation. Below is a snippet of
code from the static function RTOp TOp trice diag scal apply op(...) for the
loop that actually performs the user-defined element-wise transformation.

for(k = 0; k < sub_dim; ++k, v0_val += v0_val_s, v1_val += v1_val_s
,v2_val += v2_val_s, v3_val += v3_val_s, z0_val += z0_val_s)

{
// Element-wise transformation
if((*v3_val) < 0 && (*v1_val) < +(*inf_val))

(*z0_val) = sqrt((*v1_val)-(*v2_val));
else if((*v3_val) < 0 && (*v1_val) >= +(*inf_val))

(*z0_val) = 1;
else if((*v3_val) >= 0 && (*v0_val) > -(*inf_val))

(*z0_val) = sqrt((*v2_val)-(*v0_val));
else if((*v3_val) >= 0 && (*v0_val) <= -(*inf_val))

(*z0_val) = 1;
}

The above code loops over a chunk of vector elements using BLAS-compatible
strided iterators (of dimension sub dim that are provided by the vector imple-
mentation) and performs the transformation operation. The generated source
code can then be manually post-modified (and perhaps better optimized).

The developer of an ANA implemented in C++, for instance, can include
the header file RTOp TOp trice diag scal.h and then a RTOp object for this
transformation operator can be created, used and destroyed as:

#include "RTOp_TOp_trice_diag_scal.h"

...

void trice_diag_scale(const AbstractVector& a, const AbstractVector& b
,const AbstractVector& u, const AbstractVector& w, const AbstractVector& d)

{
// Create and initialize the instance data for the operator
const RTOp_value_type inf_val = 1e+50;
const RTOp_RTOp trice_scal_op;
RTOp_TOp_trice_diag_scal_construct(inf_val,&trice_scal_op);
// Apply the operator to the existing vectors a, b, u, w and d
const AbstractVector* vecs[] = { &a, &b, &u, &w };
AbstractVector* targ_vecs[] = { &d };
apply_op(trice_scal_op, 4, vecs, 1, targ_vecs, RTOp_REDUCT_OBJ_NULL);
// Destroy the operator and clean up memory
RTOp_TOp_trice_diag_scal_destroy(&trice_scal_op);

}

The above constructor and destructor are declared in the generated header
file and are automatically implemented in the source file by the script. The
above code snippet uses the C++ vector interface AbstractVector that is in-
cluded in the example code. The apply op(...) function simply calls the
apply op(...) method on the first vecs[0] object. Note that the order of the
vector arguments a, b, u and w matches the order defined in (11). The order-
ing of the vector arguments must match and this order is determined by the
developer that created the RTOp subclass.

ACM Transactions on Mathematical Software, Vol. 30, No. 1, March 2004.

82 • R. A. Bartlett et al.

B.2 Example Reduction Operator

The next example operator we consider is the reduction operation in (2). First
we rewrite the operation in generic standard form as:

α← {max α : v0 + αv1 ≥ β}, (12)

This reduction operation is more complex than the previous example trans-
formation operation and requires a little more thought. If we can assume that
v0

i ≥ β, for i = 1 · · ·n before going in, what the above reduction is really asking
for is the minimum αi where:

αi = max
((
β − v0

i

)
/v1

i , 0
)
.

The reduction operation (12) can then be reexpressed as:

α← min
{

max
((
β − v0

i

)
/v1

i , 0
)
, for i = 1 . . .n

}
.

This reduction operation requires the scalar operator data β (beta) and pro-
duces the scalar reduction object α (alpha). To make this operator work correctly,
we must initialize the reduction object alpha to a very large value. In this im-
plementation we will assume that 1e+200 will be larger than any reasonable
values of the reduction. Whenever using min(...) for the reduction of interme-
diate reduction objects, we generally want to initialize the reduction object to
some large value before performing the first reduction.

We will call this operator ROp max feas step; the following is the interactive
session with the new rtop.pl script used to create the implementation files.

*** Create a new C RTOp operator subclass ***

1) What is the name of your operator subclass?
: ROp_max_feas_step

2) Is your operator coordinate invariant?
[y] or [n] : y

3) Give the number of nonmutable input vectors (vi, i=0...num_vecs-1)?
: 2

4) Give the number of mutable input/output vectors (zi, i=0...num_targ_vecs)?
: 0

5) Does your operator require extra data which is not in the input vectors?
[y] or [n] : y

Choose the structure of the data:
1: {index}
2: {value}
3: {value,index}
4: {value,value}
5: other
Choose 1-5? 2

Give name for {value} member?
: beta

6) Does your operator perform a reduction?
[y] or [n] : y

ACM Transactions on Mathematical Software, Vol. 30, No. 1, March 2004.

Vector Reduction/Transformation Operators • 83

Choose the structure of the data:
1: {index}
2: {value}
3: {value,index}
4: {value,value}
5: other
Choose 1-5? 2

Give name for {value} member?
: alpha

6.a) Does the reduction object require nonzero initialization?
[y] or [n] : y

6.b) Give the initial values for the reduction object data:
alpha ? 1e+200

6.c) Choose the reduction of intermediate reduction objects:
1: sum{value,value}
2: min{value,value}
3: max{value,value}
4: other
Choose 1-4? 2

7.a) Does your element-wise operation(s) need temporary variables?
[y] or [n] : n

7.b) Give the C statement(s) for element-wise reduction operation?
You can choose:

Non-mutable operator data (don’t change here) : beta
Non-mutable vector elements (don’t change here) : v0, v1
Element-wise reduction data (must be set here) : alpha_ith

? alpha_ith = (beta - v0) / v1;
? alpha_ith = max(alpha_ith, 0.0);
?

The implementation files RTOp_ROp_max_feas_step.h and
RTOp_ROp_max_feas_step.c should be complete!

The code snippet that loops through the elements and performs the reduction
operation is contained in the generated static function RTOp ROp max feas step
apply op(...) and is shown below.

for(k = 0; k < sub_dim; ++k, v0_val += v0_val_s, v1_val += v1_val_s)
{

// Element-wise reduction
alpha_ith = ((*beta) - (*v0_val)) / (*v1_val);
alpha_ith = max(alpha_ith, 0.0);
// Reduction of intermediates
(*alpha) = min((*alpha), alpha_ith);

}

Since this is a reduction operator, the ANA code must create the reduction
target object before it is passed into a vector object’s apply op(...) method.
The following code snippet shows how an ANA code might use this reduction
operator and extract the value of the reduction.

#include "RTOp_ROp_max_feas_step.h"

...

RTOp_value_type max_feas_step(const AbstractVector& x, const AbstractVector& d
,const RTOp_value_type beta)

{
// Create and initialize the instance data for the operator
RTOp_RTOp max_feas_step_op;
RTOp_ROp_max_feas_step_construct(beta,&max_feas_step_op);

ACM Transactions on Mathematical Software, Vol. 30, No. 1, March 2004.

84 • R. A. Bartlett et al.

// Create the reduction object
RTOp_ReductTarget max_feas_step_reduct_obj;
RTOp_reduct_obj_create(&max_feas_step_op,&max_feas_step_reduct_obj);
// Apply the reduction operator to the existing vectors x and d
const AbstractVector vecs[] { &x, &d };
apply_op(max_feas_step_op, 2, vecs, 0, NULL, &max_feas_step_reduct_obj);
// Extract the value from the reduction object
RTOp_value_type alpha = RTOp_ROp_max_feas_step_val(max_feas_step_reduct_obj);
// Destroy the operator and clean up memory
RTOp_ROp_max_feas_step_destroy(&max_feas_step_op);
return alpha;

}

The above code snippet also uses the example C++ vector interface
AbstractVector mentioned above.

That is really all there is to creating most new RTOp operators using the
provided script. More details on the use of the script new rtop.pl can be found
in the help file HowTo.CreateNewRTOpSubclass at WEBSITE.

REFERENCES

ANDERSON, E., BAI, Z., BISCHOF, C., DEMMEL, J., DONGARRA, J., DU CROZ, J., GREENBAUM, A.,
HAMMARLING, S., MCKENNY, A., OSTROUCHOV, S., AND SORENSEN, D. 1995. LAPACK User’s Guide.
SIAM.

BALAY, S., GROPP, W. D., MCINNES, L. C., AND SMITH, B. F. PETSc, portable extensible toolkit for
scientific computing. http://www.mcs.anl.gov/petsc.

BARTLETT, R. A. 2001. Object oriented approaches to large-scale nonlinear programming for pro-
cess systems engineering. Ph.D. thesis, Department of Chemical Engineering, Carnegie Mellon
University, Pittsburgh, PA.

BENSON, S., MCINNES, L. C., AND MORÉ, J. TAO : Toolkit for advanced optimization, http://www-
fp.mcs.anl.gov./tao.

BLACKFORD, L. S., CHOI, J., CLEARY, A., AZEVEDO, E. D., DEMMEL, J., DHILON, I., DONGARRA, J.,
HAMMARLING, S., HENRY, G., PETITET, A., STANLEY, K., WALDER, D., AND WHALEY, R. 1997.
ScalLAPACK User’s Guide. SIAM, Philadelphia, PA.

BOOCH, G., RUMBAUGH, J., AND JACOBSON, I. 1999. The Unified Modeling Language User Guide.
Addison-Wesley.

BYRNE, G. D. AND HINDMARSH, A. C. 1999. PVODE, an ODE solver for parallel computers. Int. J.
High Perf. Comput. Applic 13, 354–365.

CAI, X. 1999. Two object-oriented approaches to the parallelism of diffpack. http://www.ifi.
uio.no/~xingca/.

CLAY, R., ALLAN, B., MISH, L., AND WILLIAMS, A. 1999a. ISIS++ reference guide (iterative scalable
implicit solver in c++) version 1.1. Tech. Rep. SAND99-8231, Sandia National Laboratories.

CLAY, R. L., MISH, K. D., OTERO, I. J., TAYLOR, L. M., AND WILLIAMS, A. B. 1999b. An annotated ref-
erence guide to the finite-element interface (FEI) specification : Version 1.0. Tech. Rep. SAND99-
8229, Sandia National Laboratories.

DEMMEL, J. 1997. Applied Numerical Linear Algebra. SIAM.
DENNIS, J. E., HEINKENSCHLOSS, M., AND VICENTE, L. N. 1998. Trust-region interior-point sqp algo-

rithms for a class of nonlinear programming problems. SIAM J. Control and Optimization 36, 5,
1750–1794.

DONGARRA, J. J., DU CROZ, J., HAMMARLING, S., AND HANSON, R. J.. 1988. An extended set of
FORTRAN Basic Linear Algebra Subprograms. ACM Trans. Math. Soft. 14, 1–17.

GAMMA, E., HELM, R., JOHNSON, R., AND VLISSIDES, J. 1995. Design Patterns: Elements fo Reusable
Object-Oriented Software. Addison-Wesley.

GERTZ, M. AND WRIGHT, S. 2001. Object-oriented software for quadratic programming.
http://www.cs.wisc.edu/~swright/ooqp/.

GOCKENBACH, M. AND SYMES, W. The Hilbert class library. http://www.trip.caam.rice.edu/txt/
hcldoc/html/index.html.

ACM Transactions on Mathematical Software, Vol. 30, No. 1, March 2004.

Vector Reduction/Transformation Operators • 85

HEINKENSCHLOSS, M. AND VICENTE, L. N. 1999. An interface between optimization and application
for the numerical solution of optimal control problems. ACM Trans. Math. Soft. 25, 2 (June),
157–190.

HEROUX, M. A., BARTH, T., DAY, D., HOEKSTRA, R., LEHOUCQ, R., LONG, K., PAWLOWSKI, R., TUMINARO, R.,
AND WILLIAMS, A. 2003. An overview of Trilinos. Tech. rep. SAND2003-2927, Sandia National
Laboratories.

LUMSDANIE, A. AND SIEK, J. 1998a. ITL : the iterative template library. http://www.osl.iu.edu/
research/itl/.

LUMSDANIE, A. AND SIEK, J. 1998b. The matrix template library. http://www.lsc.nd.edu/

research/mtl/.
NOCEDAL, J. AND WRIGHT, S. 1999. Numerical Optimization. Springer, New York.
POZO, R. TNT: Template Numerical Toolkit. http://math.nist.gov/tnt.
POZO, R. 1996. LAPACK++ v 1.1: High Performance Linear Algebra User’s Guide. NIST.
RIESEN, R., BRIGHTWELL, R., FISK, L. A., HUDSON, T., OTTO, J., AND MACCABE, A. B. 1999. Cplant.
http://www.sandia.gov/cplant.

SANDIA NATIONAL LABS. 2001. ESI: Equation Solver Interface. http://z.ca.sandia.gove/esi.
TUMINARO, R., HEROUX, M., HUTCHINSON, S., AND SHADID, J. 1999. Official Aztec User’s Guide: Version

2.1. Albuquerque, NM 87185.

Received February 2003; revised August 2003; accepted October 2003

ACM Transactions on Mathematical Software, Vol. 30, No. 1, March 2004.

