
SANDIA REPORT
SAND2007-4078
Unlimited Release
Printed October 2007

The Pure Nonmember Function Interface
Idiom for C++ Classes

Roscoe A. Bartlett

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia

Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States

Government. Neither the United States Government, nor any agency thereof, nor any of their employees,

nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied,

or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any infor-

mation, apparatus, product, or process disclosed, or represent that its use would not infringe privately

owned rights. Reference herein to any specific commercial product, process, or service by trade name,

trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recom-

mendation, or favoring by the United States Government, any agency thereof, or any of their contractors

or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of

the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available

copy.

Available to DOE and DOE contractors from
U.S. Department of Energy

Office of Scientific and Technical Information

P.O. Box 62

Oak Ridge, TN 37831

Telephone: (865) 576-8401

Facsimile: (865) 576-5728

E-Mail: reports@adonis.osti.gov

Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce

National Technical Information Service

5285 Port Royal Rd

Springfield, VA 22161

Telephone: (800) 553-6847

Facsimile: (703) 605-6900

E-Mail: orders@ntis.fedworld.gov

Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
EP

ARTMENT OF ENERG
Y

• •U
N

IT
ED

STATES OF AM

ER
I C

A

2

SAND2007-4078
Unlimited Release

Printed October 2007

The Pure Nonmember Function Interface Idiom for C++
Classes

Roscoe A. Bartlett

Abstract

A pure nonmember function interface to an abstract C++ classmight provide the best
approach for keeping clean minimal interfaces, insulatingclient code from changes to an
interface, and providing a uniform interface when other nonmember nonfriend functions are
used. The proposed idiom is the logcial combination of the Nonvirual Interface (NVI) idiom
and and the Nonmember Nonfriend Function idiom. This idiom also applies equally well to
concrete C++ classes and can even be used with great advantages for constructors as well.

3

Contents

1 Introduction .. 5
2 The NVI and Nonmember Nonfriend Function Idioms 7
3 The Pure Nonmember Function Interface Idiom for Abstract Classes 11
4 The Full Impact of Changing Virtual Functions on Abstract Classes . 14
5 The Nonmember Constructor Function Idiom for Concrete Classes . 18
6 Summary. .. 22
References .. 24

Appendix

A Member verses Nonmember Functions in C++ 25
B Relationship between the Pure Nonmember Function Interface Idiom and Handle Classes

in C++ .. 28

4

1 Introduction

Object-oriented programming has been used and refined for many decades in a variety of
programming languages. Some of the most basic descriptionsof object orientation speak of
programming with objectsand refer to such concepts asobject methods, polymorphism, and
encapsulation. These concepts can be expressed in different ways in different programming
languages and each language lends itself to different idioms for how object orientation can be used
to its fullest. Here we focus on the C++ language and combine some of the more modern idioms
being advocated for C++ to propose a unifying idiom involving the consistent use of nonmember
functions. This use of nonmember functions decouples external clients of abstract interfaces and
concrete classes from the details and changes to the public interfaces of these abstract classes.
Here we will draw on the advice of several respected authors on C++ programming [5, 4].

Our primary focus is on issues related to object-oriented programming in the C++ language and
specifically the interaction between an abstract interface(consisting of pure virtual functions),
clients that use objects through the interface, and subclasses of the interface that provide concrete
implementations of the virtual functions. A secondary focus of this discussion addresses how
nonmember functions can also be used as the interface to concrete classes and even for
constructors and describes the benefits of such an approach.

With respect to abstract interfaces, our main goal here is todescribe a light weight approach for
developing C++ interfaces and encapsulation mechanisms which protect clients of an abstract C++
interface from changes to the specification of the interface’s virtual functions. This is especially
critical when the interface represents an important interoperability mechanism and is part of a
library which may have many diverse and unaccessible external clients which the library
developers can not directly access to change. Minimizing the impact of code refactorings is even
more important in C++ than in other languages because of the lack of good quality refactoring
tools for C++ code. Even when you have good refactoring tools, it is nontrivial to push refactorings
out to external clients of your class library and few if any tools for any language support this
feature currently.

What we want is to have an approach to developing, maintaining, and using abstract C++
interfaces that:

• Provides for the absolute minimal abstract C++ interfaces: An abstract C++ interface is the
critical specification of the capabilities of an object which must be able to cover the needs of
a large set of potential clients and allow great flexibility and efficiency in the implementation
of subclasses. The more minimal an interface is, the more likely it will be adopted by a
larger community and the easier it will be to develop powerful “Decorator”, “Composite”
and other such general subclasses. Minimal and efficient interfaces are especially critical for
interoperability.

• Maintains a uniform, consistent, and convenient interfacefor the clients of the abstract
interface: We want clients to be able to access the capabilities of the object in a clean way
that is robust to changes in the interface.

• Avoids many of the “gotchas” associated with object oriented programming in C++: In
particular, we want to avoid difficulties associated with overloaded virtual functions [2, Item
73], virtual functions with default arguments [4, Item 37],and other such problems.

5

• Allows for changes to an abstract interface’s virtual function set in a way this is consistent
with the above goals: As requirements become more clear or change over the life ofa piece
of software, changes to the specification of the virtual function set for an interface will be
inevitable in order to satisfy the new requirements in an efficient and safe way, and to
maintain a minimal interface. We want to avoid a sub-standard abstract interface that is
cluttered with backward-compatible functions for older clients. Ideally, the integrity and the
quality of the current incarnation of an interface should not suffer from having been
incrementally developed where compromises where made to support older clients at the
expense of the interface. We want the interface to be the samequality as if it were nearly
totally redesigned after the fact.

6

2 The NVI and Nonmember Nonfriend Function Idioms

In particular, two idioms have been advocated that are designed to address many of the issues
raised above: The Nonvirtual Interface (NVI) idiom [5, Item39], and the “nonmember nonfriend
function” idiom [5, Item 44]. Other guidelines that are pertinent to our discussion are “prefer
minimal classes to monolithic classes” [5, Item 33], “prefer providing abstract interfaces” [5, Item
36], “practice safe overriding” [5, Item 38] [2, Gotcha 74],and “avoid overloading virtual
functions” [2, Gotcha 73].

The Nonvirtual Interface (NVI) idiom [4, Item 35] advocatesmaking all virtual functions
non-public (i.e. either private or protected) and making all public functions nonvirtual. For
example, we might have an interface that looks like:

class BlobBase {
public:
// Non-virtual public interface.
// Note: Default argument values are defined here and here only!
void foo(int a=0) { implNonconstFoo(a); }
void foo(int a=0) const { implFoo(a); }

protected: // or private:
// Pure virtual non-public functions to be overridden
virtual void implNonconstFoo(int a) = 0;
virtual void implFoo(int a) const = 0;

};

The details of the NVI idiom are given in [5, Item 39] and [4, Item 35] but basically the idiom
allows clients to call regular member functions and overloaded member functions on an object
without the problems associated with overloaded virtual functions. The NVI idiom also avoids
problems with default function arguments since the defaultvalues are only defined in the
non-public, nonvirtual function interface.

Another idiom that is advocated in [5, Item 44] and [4, Item 23] is to prefer writing a function as a
nonmember nonfriend function unless it needs access to private or protected members. This
increases encapsulation and improves modularity. Typically, this idiom is described in the context
of concrete classes which actually have private data, but itis also applicable for abstract interfaces
as well. If some capability can be performed just using the existing public interface, then that
capability should be implemented as a nonmember nonfriend function. Adding another nonvirtual
function to the interface (or worse making the new function virtual with a default implementation)
mostly just clutters up the abstract interface and complicates maintenance. For example, some
functiongoo(...) could be implemented in terms ofBlobBase::foo(int) as:

void goo(BlobBase &obj)
{
obj.foo(0);
obj.foo(1);

}

The NVI idiom and “nonmember nonfriend function” idiom, canand should be used together, but
they are also somewhat at odds with each other. The NVI idiom implies that all operations that are

7

directly implemented as virtual functions on the abstract interface would be accessed using
corresponding public nonvirtual member functions. The “nonmember nonfriend function” idiom
dictates that all other functions would be implemented as nonmember nonfriend functions.
However, the straightforward combination of these two idioms has several disadvantages:

• The client interface is a mix of member and nonmember functions: The most obvious
disadvantage of having an interface composed of both nonmember and member functions is
that it can be hard for the developers of client code to remember how to call an operation.
For instance, is the operationfoo(...) called asobj.foo(i) or asfoo(obj,i)?

• Changes to the virtual function structure are difficult to handle: A change to the virtual
function structure requires that either clients be changedor that the interface be polluted
with public functions that no longer need direct access to the nonpublic virtual functions.
For example, what if requirements for the abstract interface change such that it would be
beneficial, from a design point of view, to change the specification of a virtual function. The
change might involve a modification to the signature and/or the behavior of the function.
Such a change in the virtual function would naturally involve a similar change in the
corresponding public nonvirtual member function that calls the virtual function. Let’s also
assume that the current capability of the function in question can be maintained through a
simple function that calls the newly updated function. Now the problem; how do we
implement this change and how does this change impact the current clients of the interface?
There are one of two possible ways to refactor the code: a) move the function from a
member function to a nonmember function, or b) leave the current public nonvirtual member
function in the abstract interface and make it call the newlyupdated member function. Both
of these choices are fraught with problems.

Let’s examine the two possibilities for handling changes tothe virtual function structure of the
abstract interface mentioned above. As an example, consider a new set of requirements where the
foo() member functions need to be changed to accept aBar object (represented through its own
abstract interface) instead of just an integer, and the functions also need to accept an extra boolean
argument. In addition, let’s assume that the old meaning andbehavior of thefoo() functions can
be retained by using a default implementation ofBar calledDefaultBar. We consider the two
approaches for dealing with such a change below.

a) If we want to keep the abstract interface minimal and be consistent with the “nonmember
nonfriend function” idiom, then we want to choose option ’a’which involves moving the old
public nonvirtual memberfoo() functions out of the interface and making them new nonmember
nonfriend functions. In this case, the updated class interfaceBlobBase would look like:

namespace BlobPack {

class Bar;

class BlobBase {
public:
// Public non-virtual client interface
void foo(const Bar &bar, bool flag = false)

{ implNonconstFoo(bar,flag); }

8

void foo(const Bar &bar, bool flag = false) const
{ implFoo(bar,flag); }

protected: // or private:
// Pure virtual non-public functions to be overridden
virtual void implNonconstFoo(const Bar &bar, bool flag) = 0;
virtual void implFoo(const Bar &bar, bool flag) const = 0;

};

} // namespace BlobPack

and the nonmember form of the oldfoo() functions would look like:

void BlobPack::foo(BlobBase & obj, int a)
{
obj.foo(DefaultBar(a),false);

}

void BlobPack::foo(const BlobBase & obj, int a)
{
obj.foo(DefaultBar(a),false);

}

However, this refactoring would require changing the calling syntax used by all client code that
currently calls the old version of thefoo() member function. This change is simple to make since
one just needs to replaceblob.foo(i) with foo(blob,i) and one could almost write a script to
perform the refactoring. However, this type of automated refactoring could never be performed
100% correctly and preexisting clients outside of the library developer’s control (i.e. clients of our
libraries) could not be changed easily. While this approachmaintains a clean abstract interface and
is consistent with both the NVI and the “nonmember nonfriendfunction” idioms, is has the
disadvantage of requiring clients to change their code, which may be undesirable, impractical,
and/or too expensive.

b) If we want to minimize the impact on existing clients (i.e.if our library is widely used by
external clients out of our control), then we might want to tochoose option ’b’ to leave the old
public nonvirtual functions in the abstract interface and to augment the interface with the new
public nonvirtual functions corresponding to the refactored nonpublic virtual functions. The
refactored class interface in this case would look something like:

#include "DefaultBar.hpp"

namespace BlobPack {

class BlobBase {
public:
// Old public nonvirtual functions that do not need direct access
void foo(int a = 0)

{ foo(DefaultBar(a),false); }
void foo(int a = 0) const

{ foo(DefaultBar(a),false); }

9

// Public nonvirtual functions that need direct access
void foo(const Bar &bar, bool flag = false)

{ implNonconstFoo(bar,flag); }
void foo(const Bar &bar, bool flag = false) const

{ implFoo(bar,flag); }
protected: // or private:
// Pure virtual non-public functions to be overridden
virtual void implNonconstFoo(const Bar &bar, bool flag) = 0;
virtual void implFoo(const Bar &bar, bool flag) const = 0;

};

} // namespace BlobPack

The refactoring shown above has the advantage that the clients don’t need to be changed (other
than needing to be recompiled). However, the problem with this approach of course is that it no
longer maintains a clean minimal interface and is in direct violation of the “nonmember nonfriend
function” idiom. Over time, such refactorings will result in a bloat of the abstract interface which
is discouraged by many experts in object-oriented programming in C++ [5, Item 33].

In the next section, an approach for addressing the problemsof combining these two idioms is
presented which involves the adoption of a pure nonmember function interface.

10

3 The Pure Nonmember Function Interface Idiom for Abstract
Classes

Here we present a variation of the NVI idiom that is more complementary with the “nonmember
nonfriend function” idiom. The idea is the replace the pubicnonvirtual member functions in the
abstract interface with nonmember friend functions. A simple interface using the “pure
nonmember function interface” idiom would look like:

namespace BlobPack {

class BlobBase {
// Prototypes for nonmember friend functions that
// will directly call virtual functions. Note that default
// argument values are defined here and here only.
friend void foo(BlobBase & obj, int a = 0);
friend void foo(const BlobBase & obj, int a = 0);

protected: // or private:
// Pure virtual non-public functions to be overridden
virtual void implNonconstFoo(int a) = 0;
virtual void implFoo(int a) const = 0;

};

} // namespace BlobPack

and the nonmember friend functions would be implemented as:

void BlobPack::foo(BlobBase & obj, int a)
{
foo.implNonconstFoo(a);

}

void BlobPack::foo(const BlobBase & obj, int a)
{
foo.implFoo(a);

}

Note that the C++ standard allows friend functions to be declared directly within a C++ class
declaration. Therefore, declaring a nonmember friend function is not much more verbose than
declaring a member function.

Other functions that can be implemented in terms of the existing capabilities on the object without
requiring privileged access would be implemented as nonmember nonfriend functions such as:

void goo(BlobBase &obj)
{

foo(obj,0);
foo(obj,1);

}

11

This approach has all of the same advantages of the NVI idiom with respect to allowing for
function overloading without problems and for allowing fora single definition of default parameter
values. Note that it is critical that the virtual functions themselves must remain non-public since
we can’t allow clients to be calling these directly (for lotsof reasons). Therefore, these special
nonmember functions must be friends in order to call the non-public virtual functions.

Even through at first sight replacing the public nonvirtual member functions with corresponding
nonmember friend functions looks to be more complicated, there are several advantages to doing
this:

• The client accesses capabilities in a more consistent way: A client invokes every operation
on an object using a nonmember function, independent of how that function was treated. For
example, the client would callfoo(obj,i) or goo(obj) consistently as nonmember
functions without having to worry how these are implementednow or in the future.

• Changes to the structure of the virtual function set can be handed without affecting clients
and without cluttering the abstract interface: If a virtual function needs to be modified in
some way, then the nonmember function that calls that virtual function can be changed and
the old nonmember friend function can be turned into a plain nonmember nonfriend function
which calls the new friend function and can be removed from the abstract interface.

To see how changes to the virtual function structure can be handled without impacting clients
(other than require that they be recompiled), let’s consider the same refactoring scenario described
above where a new set of requirements are introduced where thefoo() functions need to be
changed to accept aBar object (represented through its own abstract interfaceBarBase) instead of
just an integer, and the newfoo() functions also need to accept an extra boolean argument. Using
the “pure nonmember function interface” idiom, the refactored interface and supporting code
would look something like:

namespace BlobPack {

class Bar;

class BlobBase {
// Forward prototypes for nonmember friend functions that
// will directly call virtual functions
friend void foo(BlobBase& obj, const Bar &bar, bool flag = false);
friend void foo(const BlobBase& obj, const Bar &bar, bool flag = false);

protected: // or private:
// Pure virtual non-public functions to be overridden
virtual void implNonconstFoo(const Bar &bar, bool flag) = 0;
virtual void implFoo(const Bar &bar, bool flag) const = 0;

};

} // namespace BlobPack

where the direct nonmember friend functions now have the implementations:

12

void BlobPack::foo(BlobBase & obj, const Bar &bar, bool flag)
{
foo.implNonconstFoo(bar,flag);

}

void BlobPack::foo(const BlobBase & obj, const Bar &bar, bool flag)
{
foo.implFoo(bar,flag);

}

Now, what about all of the clients that relied on the old definition of thefoo() functions? As was
stated above, let’s assume that the old meaning and behaviorof thefoo() functions can be
retained by using a default implementation ofBar calledDefaultBar and a value offlag=false
which gives the following nonmember nonfriend functions:

void BlobPack::foo(BlobBase & obj, int a)
{
foo(obj,DefaultBar(a),false);

}

void BlobPack::foo(const BlobBase & obj, int a)
{
foo(obj,DefaultBar(a),false);

}

The above new nonmember nonfriendfoo() function overloads could then be included in the
same file as the other “standard” nonmember functions wheregoo(), for instance, is also declared
and defined. After this refactoring, clients that currentlyuse expressions likefoo(obj,0) now just
need to be recompiled and that is it!

As described above, the “pure nonmember function interface” idiom allows for changes in the
virtual functions of an abstract interface without requiring any changes to current client code and
without compromising the integrity and quality of the refactored interface. While the “pure
nonmember function interface” idiom solves the problem of having to refactor client code when an
interface changes, it does not address how changes to the virtual function set affects subclasses that
implement the interface’s virtual functions. The next section describes how changes to an
interface’s virtual function set affects subclasses. As more refactorings are performed over time,
older functions for different types of clients can be partitioned into different files to manage
complexity. It is much easier to change a few#includes than to change actual source code.

13

4 The Full Impact of Changing Virtual Functions on Abstract
Classes

As mentioned earlier, there are clarifications, changes, and augmentations to requirements for
software that beg for changes in the structure and behavior of the virtual functions on an abstract
interface. The “pure nonmember function interface” idiom described above takes care of insulating
clients from most types of changes to the virtual function set, but how do these changes affect
subclasses of the abstract C++ interface that override these virtual functions? There are two main
categories of subclasses of abstract C++ interfaces to consider: a) those that are owned and
controlled by the library, and b) those that are developed byexternal users and are out of the
control of the library developers. Subclasses can also be classified as i) those that are direct
subclasses of the base abstract interface (e.g. such as “Decorator” and “Composite” subclasses),
and ii) those that are indirect subclasses of the base abstract interface and don’t directly override
the top-level virtual functions.

Consider the simplifiedBlobBase interface and some of its subclasses shown in Figure 1. This
example is provided to illuminate the issues involved when refactoring the virtual functions in a
base class interface. In this example diagram, we show several of the different categories of
subclasses mentioned above. The intermediate subclassesTypeABlobBase andTypeBBlobBase
are designed to provide support for implementing theBlobBase interface for two different general
types of subclasses for more specific types of use cases. For instance,TypeABlobBase::foo(...)
is an implementation ofBlobBase::foo(...) that provides most of the needed behavor for “type
A” blobs and defers the rest of the more specific behavior to the pure virtual function
TypeABlobBase::typeAFoo(...) to be implemented by subclasses. These kinds of intermediate
type ’a.i’ subclasses are very common in object oriented class hierarchies. The type ’a.ii’ concrete
subclassesInternalDefaultTypeABlob andInternalDefaultTypeBBlob provided by the
library give good default implementations of “type A” and “type B” Blob subclasses. The classes
ExternalTypeABlob andExternalTypeABlob are type ’b.ii’ subcalsses and are implemented by
external code developers to satisfy some more specific needsthan are provided by the library. The
subclassInternalDecoratorBlob is provided by the library to support a common type of Blob
decorator and represents a type ’a.i’ subclass. The subclass ExternalDecoratorBlob is a more
specialized decorator implementation that is created and lives outside of the control of the
“BlobPack” library develoeprs and is therefore a type ’b.i’subclass.

With this example Blob class hierarchy in place, now consider the impact of refactoring the virtual
function in a base interfaceBloblBase::foo(...) as described above. Any subclasses that are
owned by or accessible by the library developers can be changed at a reasonable cost in most cases.
In our example in Figure 1, this means tha all of the classes inthe “BlobPack” package can be
refactored at a reasonable cost since they are under the “BlockPack” library developer’s control.
Also, as will be shown, indirect subclasses can largely be insulated from changes to the base
abstract interface in many cases if they are derived from well-designed intermediate subclasses
which live in the library.

The key to insulating most concrete subclasses from changesto the top-level virtual functions is
then is to create a set of appropriate intermediate subclasses, tailored to specific types of use cases,
which are owned by the library and define all of the virtual functions on the base class interface
and translate these to the more specific use cases with other virtual functions. This is the role of the

14

Figure 1. UML class diagram : Blob software before refactoring.

15

TypeABlobBase andTypeBBlobBase subclasses shown in our example. Specific categories of
clients can then drive from these tailored intermediate subclasses and not have to directly
implement any of the virtual functions in the base class interface in most cases.

While the development and use of tailored intermediate subclasses can insulate most types of
derived subclasses from changes to the higher-level virtual functions, a remaining stumbling block
are those inaccessible external subclasses that directly derive from the base abstract interface (i.e.
type ’b.i’ subclasses as defined above) such as theExternalDecoratorBlob subclass shown in
Figure 1. Examples of these types of direct subclasses wouldbe classic “Composite” or
“Decorator” subclasses that use some form of direct delegation on subordinate objects.

Now consider the refactoredBlobBase interface and subclasses shown in Figure 2. Here, the
refactoredTypeABlobBase andTypeBBlobBase intermediate subclasses insulate the concrete
subclassesInternalDefaultTypeABlob, InternalDefaultTypeBBlob, ExternalTypeABlob,
andExternalTypeBBlob from changes to the base interface and they only need to be recompiled.
The situation for the necessarily direct concrete dectorator subclassesInternalDecoratorBlob
andExternalDecoratorBlob is a little different in that they must be refactored as well in order to
remain 100 % general decorator classes. TheInternalDecoratorBlob subclass is not much of a
problem since it is maintained by the “BlobPack” library developers and it’s current (nonmember)
public interface will likely not be broken due to the refactoring. The problematic subclasses are
those external type ’b.i’ subclasses that directly derive from the base interface and that are out of
the control of the library developers such as theExternalDecoratorBlob subclass. In the most
general case, these type ’b.i’ subclasses will have to be manually refactored by the external
developers. There are strategies where the cost of performing such external refactorings can be
lessened but avoiding a refactoring altogether is usually not possible. We will not discuss specific
strategies for minimizing the cost of such refactorings anyfurther here.

The goal of this section was to round out the discussion of thefull impact of changing the virtual
function set in a base class interface in how such a refactoring can be absorbed in the subclasses of
the interface and at what cost. As described above, in many cases, intermedate subclasses can
insulate many different types of concrete subclasses from significant changes to the base class’s
virtual functions and can therefore make such refactoringsreasonable and affordable. However, in
the absents of very sophisticated refactoring tools for C++(which simply do not exist at the time of
this writting and may never exist), we can not fully protect external subclass developers for such
refactorings. It should be noted, however, that for many types of more mature class libraries, that
there should be relatively few examples of direct external “Composite” or “Decorator” subclasses
such asExternalDecoratorBlob which are the most significant problem from a refactoring
standpoint. Note however, that modern Agile software engineering methodologies really mandate
the need for refactoring and therefore we must actively planfor change and the refactorings that
are needed to manage complexity.

16

Figure 2. UML class diagram : Blob software after refactoring.

17

5 The Nonmember Constructor Function Idiom for Concrete Classes

While the key focus of the “pure nonmember function interface” idiom described here is in
connection with abstract C++ classes, it is also applicableto concrete classes as well. In fact, the
discussion in [4, Item 23] primarily deals with nonmember functions used with concrete classes. In
the context of abstract classes, the “pure nonmember function interface” idiom helps to
encapsulate the virtual functions. In the context of concrete classes, the “pure nonmember function
interface” idiom helps to better encapsulate private members. For most practical purposes, clients
do not really need to differentate between concrete and abstract classes when reference semantics
are being used for the objects in question.

However, the one major difference between an abstract classand a concrete class is that you can
construct an object for a concrete class but not for an abstract class (unless you construct an object
from a concrete subclass of the abstract class of course in which case we are back to talking about
concrete classes). Therefore, constructors are one of the major details that differentiate concrete
classes and abstract classes. There are many good argumentsfor defining and having users call
nonmember constructor functions as apposed to directly calling member constructor functions.

Nonmeber constructor functions can be defined to create and return objects by value (i.e. to
construct objects on the stack) or to return (smart) pointers to dynamically allocated objects. Both
types of nonmember constructor functions are useful in different contexts. Typically, small objects
that are manipulated with value semantics will be given nonmember constructor functions that
return the created objects by value (and typically use the return-value optimization to achieve good
performance). On the other hand, larger objects that are manipulated through reference or pointer
sementics will be given nonmember constructor functions that return (smart) pointers to allocated
objects. Experienced C++ developers typically manage these dynamically allocated objects with
some type of smart pointer class [5, Item 13]. Here, we will refer to a smart pointer class that exists
in the Trilinos Teuchos package calledTeuchos::RCP [1] which uses a nonember constructor
functionTeuchos::rcp(rawPtr). Any other high quality smart pointer class such
boost::shared ptr could be used as well as part of this discussion.

The nommeber constructor function idom that creates dynamically allocated objects takes the
form:

class Widget {
// Declaration of nonmember constructor function
friend RCP<Widget> widget();

public:
// Public interface
void display(std::ostream&);

private: // or protected
// Non-public constructor
Widget();

};

// Definition of nonmember constructor function
inline
RCP<Widget> widget()
{
return rcp(new Widget());

18

}

The above nonmember constructor function ensures that every Widget object that is created is
dynamcially allocated and wrapped in anRCP object. The convention estabilished here is to
typically use a function name that starts with a lower case letter (e.g.widget(...)) which
corresponds to the class name which begins with an upper-case letter (e.g.Widget). This naming
convention for nonmeber constructor functions is short andmakes for well documented client code.

Using this nonmember constructor function, client code canthen create and useWidget objects as
follows:

RCP<Widget> w = widget();
w->display(std:cout);

There are sevaral advantages to the nonmember constructor function idiom applied to dynamcially
allocated objects over raw calls tonew Type(...):

• Nonmember constructor functions can be overloaded or can begiven different names to
make the result of the construction more clear.While member constructor functions must
always be overloaded (i.e. taking different argument lists) to handle different construction
states, nonmember constructor functions can actually use different names to make them
more clear. For example, the nonmeber constructor functions ovalShape(height, width
) androundShape(diameter) may be more clear than using the direct overloaded
constructorsShape(height, width) andShape(diameter, diameter) or Shape(
diameter).

• Nonmember constructor functions can directly return smartpointer wrapped objects.This
avoids having to call an extra function to create the wrappedpointer. For example, compare:

RCP<Widget> w = Teuchos::rcp(new Widget(...));

to

RCP<Widget> w = widget(...);

• The template argument(s) in a templated nonmember constructor function can be figured out
automatically by the compiler in many cases.This avoids having to provide template
arguments when the types can be determined from the formal arguments. If you allocate a
templated class directly, you must always give the templatearguments explicitly but this
many not be required when using the nonmember function whichallows you to replace:

new GenericWidget<VeryLongAndUglyInputType>(input)

with

genericWidget(input)

19

in many situations.

• Nonmember constructor functions help to avoid memory leakswhen exceptions are thrown.
For example, the statement:

WidgetC wc(rcp(new WidgetA(...)), rcp(new WidgetB(...)));

might create a memory leak if an exception is thrown by one of the constructors (see [5, Item
13]). The reason that a memory leak might occur is that a C++ compiler is allowed to
evaluatenew WidgetA(...) andnew WidgetB(...) before calling thercp(...)
functions. If the constructorWidgetB(...) throws an exception after theWidgetA(...)
constructor has been invoked but before theRCP object wrapping theWidgetA object is
constructed, then the memory created bynew WidgetA(...) will never be reclaimed. If
you use nonmember constructor functions, other other hand,then you would have:

WidgetC wc(widgetA(...), widgetB(...));

and no memory leaks will be created if an exception is thrown since each argument is
returned as a fully formedRCP object which will clean up memory if any exception is thrown.

• Nonmember constructor functions increase the encapsulation of your classes by not
requiring direct access to private data (see [5, Item 44]) and allowing less duplication of
default member values. You can provide many different special case constructors without
cluttering up the class which can just have a general purposeconstructor and or a set of
post-construction initialization functions. This also helps to improve maintaince by only
having a single default constructor that sets default member values only once.

• Nonmember constructor functions that return smart pointerwrapped objects avoids raw
pointers at the application programming level. Raw pointers are the root cause of segfaults
and memory leaks in C++ and as a C++ community we should move tothe development of
an environment where we can avoid them in high-level code (see “Hide pointer operations”
in [3, Section 7.1]).

• Nonmember constructor functions allow a single simply written class to create const and
non-const encapsulations of other objects. For example, the following class and nonmember
constructor functions allow clients to safely wrap contained objects:

class Wrapper {
friend RCP<Wrapper> nonconstWrapper(const RCP<Contained> &contained);
friend RCP<const Wrapper> wrapper(const RCP<const Contained> &contained);

public:
RCP<Wrapper> getContained() { return contained_; }
RCP<const Wrapper> getContained() const { return contained_; }

private:
RCP<Contained> contained_;
Wrapper(const RCP<Contained> &contained)
{ contained_ = contained; }

};

RCP<Wrapper> nonconstWrapper(const RCP<Contained> &contained)

20

{
return rcp(new Wrapper(contained));

}

RCP<const Wrapper> wrapper(const RCP<const Contained> &contained)
{

return rcp(new Wrapper(rcp_const_cast<Contained>(contained)));
// Note: This const_cast is safe since the const Wrapper
// object that is returned will only give clients an RCP to a
// const Contained object. However, this assumes that the Wrapper
// class will be written carefully to protect const of the wrapped
// object in non-const member functions.

}

There are many other alternative ways to develop wrapper classes that protect const of
contained objects. However, a more detained discussion about how to write wrapper classes
that protect the const-ness of contained objects in a maintainable and safe way is beyond the
scope of the “pure nommeber function interface” idiom whichis our main focus here.

21

6 Summary

Here we have presented a sort of composite C++ idiom called the “pure nonmember function
interface” idiom which is composed out of two other idioms, the non-virtual interface (NVI) idiom
[5, Item 39] and the “nonmember nonfriend function” idiom [5, Item 44]. We argue that the
proposed “pure nonmember function interface” idiom is the logical union of these two other
idioms when issues of code evolution and refactoring are considered in an environment where
refactoring tools are absent or impractical to use.

In summary, the “nonmember nonfriend function” idiom:

• results in maximum code encapsulation,

• provides a uniform (nonmmeber function) client interface,

• avoids problems with overloaded virtual functions,

• avoids problems with default parameter values in virtual functions,

• insulates clients from refactorings to the virtual function structure of abstract interfaces (and
therefore makes such refactorings reasonable and affordable), and

• preserves the minimality and integrity of abstract interface even after numerious changes in
requirements and subsequent refactorings.

While there are many advantages to the “pure nonmember function interface” idiom, it is not
without some cost. Some of the potential disadvantages of a pure nonmember function interface
are:

• Calling a nonmember function may require explicit namespace qualification (or a using
declaration) and/or explicit template arguments in order to get the right function to be called
which is almost never needed for a non-template member function call.

• The implementations of nonmember friend functions are a little more verbose than member
functions. For example, one has to explicitly qualify the object argument (i.e.blob) instead
of an implicit this->. Some programmers may consider it an advantage to be more explicit
however and some languages (e.g. Python and Perl) always require explicit qualification to
the object in member function implementations.

• Documentation may become more complicated to develop and access since it is not clear
where to document the behavior of a function. Should the documentation be in the public
nonmember function (better for the client) or should it be inthe declaration of the
protected/private virtual function (better for subclass implementors)? Clearly some
documentation guidelines need to be worked out in order to address these issues.

Since there are some disadvantages to developing and using apure nonmember function interface
for an abstract or concrete class, one should not automatically choose it over a more common
member function interface. If a particular class is not widely used, is not widely accessible to

22

clients, and/or is unlikely to change, then developing a pure nonmember function interface may be
overkill and not worth the (all be it small) extra work. However, in the face of uncertainty one
should lean toward using the pure nonmember function interface idiom since it allows great
freedom in refactoring code with minimal impact on clients.

23

References

[1] R. A. Bartlett. Teuchos::RefCountPtr : An intruductionto the Trilinos smart reference-counted
pointer class for (almost) automatic dynamic memory management in C++. Technical report
SAND04-3268, Sandia National Laboratories, Albuquerque,New Mexico 87185 and
Livermore, California 94550, 2004.

[2] S. Dewhurst.C++ Gotchas: Avoiding Common Problems in Coding and Design. Addison
Wesley, 2003.

[3] S. McConnell.Code Complete: 2nd Edition. Microsoft Press, 2004.

[4] S. Meyers.Effective C++: Third Edition. Addison Wesley, 2005.

[5] H. Sutter and A. Alexandrescu.C++ Coding Standards: 101 Rules, Guidelines and Best
Preactices. Addison Wesley, 2005.

24

A Member verses Nonmember Functions in C++

It is instructive to consider the implications of member andnonmember functions in C++ and how
these differ with other object-oriented languages. Specifically, we will consider three different
object-oriented languages: C++, Java, and Python. We can broadly classify languages as more
strongly typed and less strongly typed. In a stronger typed language such as C++ and Java, the
semantics of an object are determined at compile time. For example, in C++ and Java, the set of
member functions that are callable on a class object likeBlobBase is known before the program
even starts to execute. In fact, all of the member functions on a C++ and Java class must be
declared in a single header file within a single class declaration (e.g.class BlobBase { ...
};)1. In Python, however, a member function can be added to an object at any time at runtime
while a Python program is executing and therefore calling anoperation on an object through
member function results in no lack of flexibility like it doesin C++. As for member and
nonmember functions, Python and C++ can have nonmember functions while Java can not.
Therefore, when one talks about member and nonmember functions, conventions used in Java are
mostly meaningless.

Okay, so C++ and Python both allow member and nonmember functions. So why is there not a
“nonfriend nonmember function” idiom for Python like thereis for C++? To begin to answer this
question, first consider that Python does not have any true encapsulation. If any piece of Python
code wants to grab the private data for a object, they can justdo it. Therefore, there are no features
like private andfriend in a language like Python without encapsulation. Another difference
between C++ and Python is that in Python, any code can add a newmember function to any
Python object at any time dynamically at runtime. Therefore, Python code that uses the member
function syntaxobj.foo() to invoke some operation is no less flexible then using nonmember
function syntax likefoo(obj). Therefore, since many programmers think that object orientation
means calling member functions such asobj.foo(), there is no disadvantage to allowing them to
do so in a language like Python.

The situation for C++ is quite different. By having the client insist on using member function
syntax such asobj.foo(), one is already placing several restrictions on how that operation is
implemented and gets invoked. In particular, having a client use a member function (e.g.
obj.foo()) to invoke an operation on a C++ object requires that:

1. The function must be declared as a member function on the class in a single declaration (i.e.
within class ClassName { ... };) in a single file. Sure the function’s definition can
can be redefined by some subclass but the object itself must determine how to perform the
operation.

2. The function must be set at compile time and can not changeddynamically.

3. A member function can access private and producted members and therefore errodes
encapsulation, even if none of the non-public members are accessed initially. If
encapsulation by gentleman’s agreement is sufficient for you then you are working with the
wrong programming language and perhaps Perl or Python mightbe more to your liking.

1Some of the functions callable on a class object can of coursebe defined in base classes but that does not change the
point of the discussion here.

25

On the other hand, using the nonmember function syntax in C++foo(obj) opens the door for a
great many different possibilities for how the operation gets invoked. Some of the possibilities for
the implementation of a nonmember function are:

1. The nonmember function could be a direct call to the memberfunction on an object (e.g.
foo(obj) means the same thing asobj.foo()). Therefore, the use of the nonmember
function is as least a flexible as directly calling a member function. In addition, the
nonmember function syntax almost always uses less ASCII characters. For example, writing
foo(obj) only takes eight ASCII characters to write, whileobj.foo() takes nine ASCII
characters. This is a trival difference but the point is made.

2. The nonmember function could perform a few different types of tasks before calling the
member function on some object. With this approach, we can add different layers of
capabilities in a distributed way.

3. The nonmember function could actually be involved in a sophisticated type of multi-dispatch
system where the exact operation to call would be determinedby the traits of the objects
involved at runtime. For example, a nonmember function using multi-dispatch like
foo(objA,objB) could call one of a number of different operations based on the types or
properties of the objectsobjA andobjB.

In addition, nonmember functions that are declared in the same namespace as the types of the
objects in their argument lists will be automatically looked up and called without requiring
namespace qualification (this is know as Argument DependentLookup (ADL))2.

But does not object-oriented programming mean that all operations on objects are called through
member functions? Some programmings (and users) might currently expect and even insist on this
but many current object-oriented C++ experts would not agree. For example, Scott Meyers in [4,
Item 23] states:

Object-oriented principles dictate that data and the functions that operate on them
should be bundled together, and that suggests that the member function is a better
choice. Unfortunately, this suggestion is incorrect. It’sbased on a misunderstanding of
what object-orientation means.

If nonmember functions are so less flexible than member functions, then why even bother using
member functions at all? Why not just use nonmember friend functions in the place of member
functions as is advocated in the “pure nonmember function interface” idiom for all C++ classes?
Well, there are a few reasons that you would want to just use member functions declared and
defined within the class. First, some functions like the assignment operator are required to be
member functions as are a few other operator functions. In these cases, you have not choice but the
use public member functions. Second, if the C++ classes you are writing are expected to be very
stable or if changes to these classes can be easily propagated to all clients using the class, then
using member functions is attractive since it just involvesless typing, uses less ASCII characters
and may be easier to follow.

2In some types of templated code, calling a nonmember function without namespace qualification does not always
work but there are usually various work arounds to make this manageable.

26

Friends and member functions are a fundamental part of the implementation of true encapsulation
in C++. They help to provide a system by which we can enforce encapsulation while still allowing
programs to be written to do things. By requiring that friends and member functions be declared
right in a class declaration, one can easily enumerate and track down all code that has access to
private members which facilitates safe code refactorings which is the whole reason for
encapsulation in the first place3. Therefore, we should think about friends and member functions in
C++ as the basic tools for implementing encapsulation and not primarily as interfaces for clients.
By adopting the “pure nonmember function interface” idiom,we relieve clients from having to
worry about whether a function needs to acces encapsulated data (in which case it needs to be a
friend) or not (in which case it does not need to be a friend), which is not really any of their
business anyway.

Other than for a bit of laziness and personal preference for writing obj.foo() as apposed to
foo(obj), there really is not a strong argument against using the “pure nonmember function
interface” idiom.

Since Java does not have the concept of nonmember functions,one could use a separate static class
to declare these non-privileged functions and one could therefore have the same benefits as in C++
when using the “pure nonmember function interface” idiom. However, since there would no longer
be any namespace lookup, clients would have to explicitly qualify the static class’s name when
calling the functions. Also, there are many high-quality refactoring tools for Java that make it
much easier to propagate refactorings to client code. Therefore, the lack of good refactoring tools,
the convenience of automatic namespace lookup, and other issues make the “nonmember function
interface” more attractive for C++ than for Java or other object-oriented languages.

3If code never changed then why would anyone care about encapulation?

27

B Relationship between the Pure Nonmember Function Interface
Idiom and Handle Classes in C++

A handle class is a concrete class that is meant to mimic the object that it wraps through a pointer
to that object. Typically, a handle class is used to wrap an object that uses reference or pointer
semantics, such as objects represented through an abstractinterface. For example, a simple handle
class for aBlobBase object might look like:

namespace BlobPack {

class Blob {
public:
Blob(RCP<BlobBase> &blob) : blob_(blob) {}
void foo(const Bar &bar, bool flag) { foo(*blob_,bar,flag); }
void foo(const Bar &bar, bool flag) const { foo(*blob_,bar,flag); }

private:
RCP<BlobBase> blob_;

};

} // namespace BlobPack

The above handle class allows for multiple handle objects toreference the same underlying
BlobBase object and a handle object can be reassigned after constructed. There are many nuances
to consider when one develops a handle class. However, a detailed treatment of handle classes is
beyond the scope of this discussion.

The “pure nonmember function interface” idiom and the “handle” idiom are similar in that both
provide a layer of indirection between clients and the specification of the virtual function set which
insulates clients from changes to the abstract interface.

However, the “pure nonmember function interface” idiom offers some potential benefits over a
strict handle interface that uses member functions on the handle class:

1. Nonmember functions can be split into multiple files while member functions on a handle
class can not: Splitting capabilities across multiple files allows for greater segmentation in
the capability set for a set of objects, it reduces unnecessary dependences and allows for
growth in the set of capabilities without impacting currentclients (or even require them to be
recompiled) (see [4, Item 23] a specific discussion of this issue). However, if most functions
defined on the handle object are expressed as nonmember functions, then this would allow
for the same flexibility to segment capabilities and this problem is eliminated.

2. Nonmember functions do not suffer from some of the more confusing aspects of handle
classes. For example, a semantics of a handle class must be carefullyspelled out as to how
objects can be shared, what the copy constructor and assignment operator functions do, and
other such details. Nonmember functions do not have to deal with any of these issues.

On the other hand, if extra state needs to be added to the object in order to perform extended
operations, then using a handle class might be an attractiveapproach. However, if the handle class

28

allows multiple handle objects or other clients to point to the same underlying object, then
allowing for extra data in the handle object can be risky since that data can easily be invalidated in
many cases.

There are cases where the syntactic advantages of using a handle class are compelling and
therefore handles should be used in these cases. Even if a handle class is to be used, most
operations performed with handle objects should be implemented as nonmember functions for
reasons of avoiding bloat of the handle class and allowing for incremental and distributed
capabilities. Of course, if one allows for both the use of member functions on the handle class and
nonmember functions, then this brings up all of the same issues as it did for the interface class
itself. However, since a handle class should almost never beused as a means of interoperability,
one can be more lenient about what functions are added as member functions and therefore handle
classes used as a convenience can tolerate refactorings better and tolerate more bloat. Additionally,
since the member functions on a handle class should never need privileged access to the underlying
object, there will never need to change the handle class’s interface; only augmentations will be
required. Therefore, the handle idiom and the pure nommember function idiom can be used
together and complement each other.

29

DISTRIBUTION:

2 MS 9018 Central Technical Files, 8944

2 MS 0899 Technical Library, 4536

30

v1.27

