SANDIA REPORT

SAND2007-4078
Unlimited Release
Printed October 2007

The Pure Nonmember Function Interface
ldiom for C++ Classes

Roscoe A. Bartlett

Prepared by
Sandia National Laboratories
Albuquergue, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s

National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.

@ Sandia National Laboratories

Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia
Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government, nor any agency thereof, nor any of their employees,
nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied,
or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any infor-
mation, apparatus, product, or process disclosed, or represent that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government, any agency thereof, or any of their contractors
or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of
the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available
copy.

Available to DOE and DOE contractors from
U.S. Department of Energy

Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov

Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov

Online ordering: http:/www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

SAND2007-4078
Unlimited Release
Printed October 2007

The Pure Nonmember Function Interface Idiom for C++
Classes

Roscoe A. Bartlett

Abstract

A pure nonmember function interface to an abstract C++ ctaght provide the best
approach for keeping clean minimal interfaces, insulatifent code from changes to an
interface, and providing a uniform interface when othermember nonfriend functions are
used. The proposed idiom is the logcial combination of thewitoial Interface (NVI) idiom
and and the Nonmember Nonfriend Function idiom. This ididso applies equally well to
concrete C++ classes and can even be used with great adeamdagonstructors as well.

Contents

O 1 0o o 11T T X 5
2 The NVI and Nonmember Nonfriend Function Idioms« ceee oot 7
3 The Pure Nonmember Function Interface Idiom for Abstrdas€es 11
4 The Full Impact of Changing Virtual Functions on Abstrata€des.................... 14
5 The Nonmember Constructor Function Idiom for Concretes§#a. 18
B SUMIMIATY . .ottt e e e e e e e 22
REIEIENCES . . .ot e e 24
Appendix

A Member verses Nonmember Functions in C++ ie e i 25
B Relationship between the Pure Nonmember Function Irterdfdiom and Handle Classes

] 0 28

1 Introduction

Object-oriented programming has been used and refined fay decades in a variety of
programming languages. Some of the most basic descriptiooigiect orientation speak of
programming with objectand refer to such concepts alsject methodgpolymorphismand
encapsulationThese concepts can be expressed in different ways inetiff@rogramming
languages and each language lends itself to different slimmhow object orientation can be used
to its fullest. Here we focus on the C++ language and comhingesof the more modern idioms
being advocated for C++ to propose a unifying idiom involythe consistent use of nonmember
functions. This use of nonmember functions decouples eatetients of abstract interfaces and
concrete classes from the details and changes to the paotditaces of these abstract classes.
Here we will draw on the advice of several respected authoiS#+ programming [5, 4].

Our primary focus is on issues related to object-oriented@mming in the C++ language and
specifically the interaction between an abstract interfaoasisting of pure virtual functions),
clients that use objects through the interface, and sudEsasf the interface that provide concrete
implementations of the virtual functions. A secondary ®offithis discussion addresses how
nonmember functions can also be used as the interface toateratasses and even for
constructors and describes the benefits of such an approach.

With respect to abstract interfaces, our main goal heredgsaribe a light weight approach for
developing C++ interfaces and encapsulation mechanisnthwhotect clients of an abstract C++
interface from changes to the specification of the inteiagietual functions. This is especially
critical when the interface represents an important igterability mechanism and is part of a
library which may have many diverse and unaccessible eftetients which the library
developers can not directly access to change. Minimiziegrtipact of code refactorings is even
more important in C++ than in other languages because oftliedf good quality refactoring
tools for C++ code. Even when you have good refactoring faiols nontrivial to push refactorings
out to external clients of your class library and few if angltofor any language support this
feature currently.

What we want is to have an approach to developing, main@i@nd using abstract C++
interfaces that:

e Provides for the absolute minimal abstract C++ interfacés abstract C++ interface is the
critical specification of the capabilities of an object whimust be able to cover the needs of
a large set of potential clients and allow great flexibilibdaefficiency in the implementation
of subclasses. The more minimal an interface is, the moedylikwill be adopted by a
larger community and the easier it will be to develop poweiecorator”, “Composite”
and other such general subclasses. Minimal and efficiemffates are especially critical for
interoperability.

e Maintains a uniform, consistent, and convenient interfemehe clients of the abstract
interface We want clients to be able to access the capabilities of bjecbin a clean way
that is robust to changes in the interface.

e Avoids many of the “gotchas” associated with object orienpeogramming in C++ In
particular, we want to avoid difficulties associated witkedwaded virtual functions [2, Item
73], virtual functions with default arguments [4, Item 3&hd other such problems.

5

e Allows for changes to an abstract interface’s virtual fuontset in a way this is consistent
with the above goalsAs requirements become more clear or change over the ldgace
of software, changes to the specification of the virtual fiomcset for an interface will be
inevitable in order to satisfy the new requirements in arcieffit and safe way, and to
maintain a minimal interface. We want to avoid a sub-stashddnstract interface that is
cluttered with backward-compatible functions for oldeents. Ideally, the integrity and the
quality of the current incarnation of an interface shoultswdfer from having been
incrementally developed where compromises where madepfmosuiolder clients at the
expense of the interface. We want the interface to be the galéy as if it were nearly
totally redesigned after the fact.

2 The NVI and Nonmember Nonfriend Function Idioms

In particular, two idioms have been advocated that are deditp address many of the issues
raised above: The Nonvirtual Interface (NVI) idiom [5, 1t&8], and the “nonmember nonfriend
function” idiom [5, Item 44]. Other guidelines that are fyeent to our discussion are “prefer
minimal classes to monolithic classes” [5, Item 33], “predeoviding abstract interfaces” [5, Item
36], “practice safe overriding” [5, Iltem 38] [2, Gotcha 74hd “avoid overloading virtual
functions” [2, Gotcha 73].

The Nonvirtual Interface (NVI) idiom [4, Item 35] advocatesking all virtual functions
non-public (i.e. either private or protected) and makirigrablic functions nonvirtual. For
example, we might have an interface that looks like:

cl ass Bl obBase {
public:
/1 Non-virtual public interface.
Il Note: Default argument values are defined here and here only!
void foo(int a=0) { inplNonconstFoo(a); }
void foo(int a=0) const { inplFoo(a); }
protected: // or private:
[l Pure virtual non-public functions to be overridden
virtual void inplNonconstFoo(int a) = 0;
virtual void inplFoo(int a) const = 0;

1

The details of the NVI idiom are given in [5, Item 39] and [4rtt 35] but basically the idiom
allows clients to call regular member functions and ovetémhmember functions on an object
without the problems associated with overloaded virtuatfions. The NVI idiom also avoids
problems with default function arguments since the defeallies are only defined in the
non-public, nonvirtual function interface.

Another idiom that is advocated in [5, Item 44] and [4, Iten) B30 prefer writing a function as a
nonmember nonfriend function unless it needs access tatpror protected members. This
increases encapsulation and improves modularity. Tylgjahais idiom is described in the context
of concrete classes which actually have private data, lmiso applicable for abstract interfaces
as well. If some capability can be performed just using thistieg public interface, then that
capability should be implemented as a nonmember nonfrienctibn. Adding another nonvirtual
function to the interface (or worse making the new functiotual with a default implementation)
mostly just clutters up the abstract interface and comgggaaintenance. For example, some
functiongoo(...) could be implemented in terms Bf obBase: : f oo(i nt) as:

voi d goo(Bl obBase &obj)

{
obj . foo(0);
obj . foo(1);
}

The NVI idiom and “nonmember nonfriend function” idiom, cand should be used together, but
they are also somewhat at odds with each other. The NVI idiopliés that all operations that are

7

directly implemented as virtual functions on the abstratgrface would be accessed using
corresponding public nonvirtual member functions. Therfimember nonfriend function” idiom
dictates that all other functions would be implemented asm&mber nonfriend functions.
However, the straightforward combination of these twonaschas several disadvantages:

e The client interface is a mix of member and nonmember fumtithe most obvious
disadvantage of having an interface composed of both nofeeand member functions is
that it can be hard for the developers of client code to renggrhbw to call an operation.
For instance, is the operatidioo(...) called asbj.foo(i) or asfoo(obj,i)?

e Changes to the virtual function structure are difficult tanldée A change to the virtual
function structure requires that either clients be charmedtat the interface be polluted
with public functions that no longer need direct access ¢éabnpublic virtual functions.
For example, what if requirements for the abstract interfettange such that it would be
beneficial, from a design point of view, to change the spetifia of a virtual function. The
change might involve a modification to the signature andiertdehavior of the function.
Such a change in the virtual function would naturally ineobs/similar change in the
corresponding public nonvirtual member function thatc#ile virtual function. Let’s also
assume that the current capability of the function in qoestian be maintained through a
simple function that calls the newly updated function. Nbw problem; how do we
implement this change and how does this change impact thentulients of the interface?
There are one of two possible ways to refactor the code: agritw/function from a
member function to a nonmember function, or b) leave theectipublic nonvirtual member
function in the abstract interface and make it call the neygglated member function. Both
of these choices are fraught with problems.

Let's examine the two possibilities for handling changeth®virtual function structure of the
abstract interface mentioned above. As an example, careidew set of requirements where the
foo() member functions need to be changed to acc®at abject (represented through its own
abstract interface) instead of just an integer, and thetifume also need to accept an extra boolean
argument. In addition, let's assume that the old meaningoahevior of the oo() functions can

be retained by using a default implementatiorBaf calledDef aul t Bar . We consider the two
approaches for dealing with such a change below.

a) If we want to keep the abstract interface minimal and beistent with the “nonmember
nonfriend function” idiom, then we want to choose optionwiich involves moving the old

public nonvirtual membefroo() functions out of the interface and making them new nonmember
nonfriend functions. In this case, the updated class itesl obBase would look like:

nanmespace Bl obPack {
class Bar;

cl ass Bl obBase {
public:
[l Public non-virtual client interface
voi d foo(const Bar &bar, bool flag = false)
{ inpl Nonconst Foo(bar,flag); }

void foo(const Bar &bar, bool flag = false) const
{ inplFoo(bhar,flag); }
protected: // or private:
Il Pure virtual non-public functions to be overridden
virtual void inplNonconstFoo(const Bar &bar, bool flag) = 0;
virtual void inplFoo(const Bar &bar, bool flag) const = 0;

b

} I/l namespace Bl obPack

and the nonmember form of the dldo() functions would look like:

voi d Bl obPack::foo(Bl obBase & obj, int a)

{
obj . foo(Defaul tBar(a),fal se);

}

voi d Bl obPack::foo(const Bl obBase & obj, int a)

{
obj . foo(Defaul tBar(a),fal se);

}

However, this refactoring would require changing the oglisyntax used by all client code that
currently calls the old version of tHeo() member function. This change is simple to make since
one just needs to replabkob. f oo(i) with foo(bl ob, i) and one could almost write a script to
perform the refactoring. However, this type of automatddatering could never be performed
100% correctly and preexisting clients outside of the lipi@developer’s control (i.e. clients of our
libraries) could not be changed easily. While this appraaeintains a clean abstract interface and
is consistent with both the NVI and the “nonmember nonfrigmtttion” idioms, is has the
disadvantage of requiring clients to change their codeclvhiay be undesirable, impractical,
and/or too expensive.

b) If we want to minimize the impact on existing clients (ifeour library is widely used by
external clients out of our control), then we might want telwose option ’b’ to leave the old
public nonvirtual functions in the abstract interface amdagment the interface with the new
public nonvirtual functions corresponding to the refaetbnonpublic virtual functions. The
refactored class interface in this case would look somgttlilke:

#incl ude "Defaul tBar. hpp"
nanmespace Bl obPack {

cl ass Bl obBase {
public:
[/ dd public nonvirtual functions that do not need direct access
void foo(int a = 0)
{ foo(DefaultBar(a),false); }
void foo(int a = 0) const
{ foo(DefaultBar(a),false); }

[l Public nonvirtual functions that need direct access
voi d foo(const Bar &bar, bool flag = false)
{ inpl Nonconst Foo(bar, flag); }
void foo(const Bar &bar, bool flag = false) const
{ inplFoo(bar,flag); }
protected: // or private:
Il Pure virtual non-public functions to be overridden
virtual void inplNonconstFoo(const Bar &bar, bool flag) = 0;
virtual void inplFoo(const Bar &bar, bool flag) const =0

b

} Il nanmespace Bl obPack

The refactoring shown above has the advantage that théscien’t need to be changed (other
than needing to be recompiled). However, the problem withapproach of course is that it no
longer maintains a clean minimal interface and is in diréalation of the “nonmember nonfriend
function” idiom. Over time, such refactorings will resutta bloat of the abstract interface which
is discouraged by many experts in object-oriented prograagn C++ [5, Iltem 33].

In the next section, an approach for addressing the probbéic@mbining these two idioms is
presented which involves the adoption of a pure nonmemimetitan interface.

10

3 The Pure Nonmember Function Interface Idiom for Abstract
Classes

Here we present a variation of the NVI idiom that is more canpmntary with the “nonmember
nonfriend function” idiom. The idea is the replace the pulmavirtual member functions in the
abstract interface with nonmember friend functions. A denipterface using the “pure
nonmember function interface” idiom would look like:

namespace Bl obPack {

cl ass Bl obBase {
Il Prototypes for nonmenber friend functions that
Il will directly call virtual functions. Note that default
/'l argument val ues are defined here and here only.
friend void foo(BlobBase & obj, int a =0);
friend void foo(const Bl obBase & obj, int a =0);
protected: // or private:
Il Pure virtual non-public functions to be overridden
virtual void inplNonconstFoo(int a) = 0;
virtual void inplFoo(int a) const = 0;

1

} Il namespace Bl obPack

and the nonmember friend functions would be implemented as:

voi d Bl obPack::foo(BlobBase & obj, int a)

{
foo. i npl Nonconst Foo(a) ;

}

voi d Bl obPack::foo(const Bl obBase & obj, int a)

{
foo.inpl Foo(a);

}

Note that the C++ standard allows friend functions to beated directly within a C++ class
declaration. Therefore, declaring a nonmember friendtfands not much more verbose than
declaring a member function.

Other functions that can be implemented in terms of the iegistapabilities on the object without
requiring privileged access would be implemented as norimeemonfriend functions such as:

voi d goo(Bl obBase &obj)

{
foo(obj,0);
foo(obj, 1)
}

11

This approach has all of the same advantages of the NVI idigdmrespect to allowing for
function overloading without problems and for allowing #osingle definition of default parameter
values. Note that it is critical that the virtual functiomemselves must remain non-public since
we can't allow clients to be calling these directly (for lofsreasons). Therefore, these special
nonmember functions must be friends in order to call the malplic virtual functions.

Even through at first sight replacing the public nonvirtu@miber functions with corresponding
nonmember friend functions looks to be more complicategketlare several advantages to doing
this:

e The client accesses capabilities in a more consistent Waglient invokes every operation
on an object using a nonmember function, independent of haiftinction was treated. For
example, the client would cdlloo(obj, i) orgoo(obj) consistently as nonmember
functions without having to worry how these are implemented or in the future.

e Changes to the structure of the virtual function set can bedled without affecting clients
and without cluttering the abstract interfacl a virtual function needs to be modified in
some way, then the nonmember function that calls that Vifturection can be changed and
the old nonmember friend function can be turned into a plaimmember nonfriend function
which calls the new friend function and can be removed froenaibstract interface.

To see how changes to the virtual function structure can bdlbd without impacting clients

(other than require that they be recompiled), let’s condide same refactoring scenario described
above where a new set of requirements are introduced whefedf) functions need to be
changed to acceptBar object (represented through its own abstract interBac®ase) instead of
just an integer, and the ndweo() functions also need to accept an extra boolean argumemgUsi
the “pure nonmember function interface” idiom, the refaetbinterface and supporting code
would look something like:

nanespace Bl obPack {
class Bar;

cl ass Bl obBase {
Il Forward prototypes for nonmenber friend functions that
Il will directly call virtual functions
friend void foo(BlobBase& obj, const Bar &bar, bool flag = false);
friend void foo(const Bl obBase& obj, const Bar &bar, bool flag = false);
protected: // or private:
Il Pure virtual non-public functions to be overridden
virtual void inplNonconstFoo(const Bar &bar, bool flag) = 0;
virtual void inplFoo(const Bar &bar, bool flag) const =0

b

} Il nanmespace Bl obPack

where the direct nonmember friend functions now have théeémentations:

12

voi d Bl obPack::foo(Bl obBase & obj, const Bar &bar, bool flag)

{
foo. i npl Nonconst Foo(bar, fl ag);

}

voi d Bl obPack::foo(const Bl obBase & obj, const Bar &bar, bool flag)

{
foo.inpl Foo(bar, flag);

}

Now, what about all of the clients that relied on the old d&foni of thef oo() functions? As was
stated above, let's assume that the old meaning and belwitioef oo() functions can be
retained by using a default implementationBaf calledDef aul t Bar and a value of | ag=f al se
which gives the following nonmember nonfriend functions:

voi d Bl obPack::foo(Bl obBase & obj, int a)

{
foo(obj, Defaul tBar(a),fal se)

}

voi d Bl obPack::foo(const Bl obBase & obj, int a)

{
foo(obj, Defaul tBar(a),fal se)

}

The above new nonmember nonfrieinmb() function overloads could then be included in the
same file as the other “standard” nonmember functions wymr€) , for instance, is also declared
and defined. After this refactoring, clients that currenibg expressions likeoo(obj, 0) now just
need to be recompiled and that is it!

As described above, the “pure nonmember function intetfaoem allows for changes in the
virtual functions of an abstract interface without requiriany changes to current client code and
without compromising the integrity and quality of the rdafaed interface. While the “pure
nonmember function interface” idiom solves the problemafihg to refactor client code when an
interface changes, it does not address how changes to thalirnction set affects subclasses that
implement the interface’s virtual functions. The next gettdescribes how changes to an
interface’s virtual function set affects subclasses. Asamefactorings are performed over time,
older functions for different types of clients can be patied into different files to manage
complexity. It is much easier to change a féwcl udes than to change actual source code.

13

4 The Full Impact of Changing Virtual Functions on Abstract
Classes

As mentioned earlier, there are clarifications, changesd aagmentations to requirements for
software that beg for changes in the structure and behaitbewirtual functions on an abstract
interface. The “pure nonmember function interface” idioescribed above takes care of insulating
clients from most types of changes to the virtual functiot) Iset how do these changes affect
subclasses of the abstract C++ interface that override tigsial functions? There are two main
categories of subclasses of abstract C++ interfaces tod=ons) those that are owned and
controlled by the library, and b) those that are developedxtgrnal users and are out of the
control of the library developers. Subclasses can alsodssifiled as i) those that are direct
subclasses of the base abstract interface (e.g. such asrdd@c¢ and “Composite” subclasses),
and ii) those that are indirect subclasses of the base absitarface and don't directly override
the top-level virtual functions.

Consider the simplifie@ obBase interface and some of its subclasses shown in Figure 1. This
example is provided to illuminate the issues involved whefaatoring the virtual functions in a
base class interface. In this example diagram, we showaeethe different categories of
subclasses mentioned above. The intermediate subclBgssBl obBase andTypeBBl obBase

are designed to provide support for implementingBhebBase interface for two different general
types of subclasses for more specific types of use casesastanceTypeAB| obBase: : foo(. . .)

is an implementation d8l obBase: : foo(...) that provides most of the needed behavor for “type
A’ blobs and defers the rest of the more specific behavioregtire virtual function

TypeABl obBase: : t ypeAFoo(...) to be implemented by subclasses. These kinds of interneediat
type 'a.i’ subclasses are very common in object orientegisdfderarchies. The type 'a.ii’ concrete
subclassebnt er nal Def aul t TypeABl ob andl nt er nal Def aul t TypeBBI ob provided by the

library give good default implementations of “type A’ angpe B” Blob subclasses. The classes
Ext er nal TypeABl ob andExt er nal TypeABIl ob are type 'b.ii" subcalsses and are implemented by
external code developers to satisfy some more specific rikadsare provided by the library. The
subclass nt er nal Decor at or Bl ob is provided by the library to support a common type of Blob
decorator and represents a type ’a.i’ subclass. The s@ielasr nal Decor at or Bl ob is a more
specialized decorator implementation that is created isad butside of the control of the
“BlobPack” library develoeprs and is therefore a type ’'bubclass.

With this example Blob class hierarchy in place, now consille impact of refactoring the virtual
function in a base interfad# obl Base: : foo(...) as described above. Any subclasses that are
owned by or accessible by the library developers can be eubaiga reasonable cost in most cases.
In our example in Figure 1, this means tha all of the classésariBlobPack” package can be
refactored at a reasonable cost since they are under thekiBéak” library developer’s control.
Also, as will be shown, indirect subclasses can largely belated from changes to the base
abstract interface in many cases if they are derived fronh-@eddigned intermediate subclasses
which live in the library.

The key to insulating most concrete subclasses from changhie top-level virtual functions is
then is to create a set of appropriate intermediate suledatslored to specific types of use cases,
which are owned by the library and define all of the virtualdiions on the base class interface
and translate these to the more specific use cases with ather functions. This is the role of the

14

(")ooqgadA | |dwi

(")oogyadA | jdwi

qojggadAL qojgyadAL
-|eu1a)x3 -lewia)x3gy
J J
(***)oo4gadA | [dwi (**")oo4yadA | dwt
qojggadA qojgyadAL
-}|nejaqgjeulau| -}jnejagjeuJslu|
A4 A4
0 = ("")oo4gedA jdwi 0 = ("")ooqyadA jduwy (yu)oo|duu
ul)oodwi ur)oo4dwi
(yur)oo|duu (3u)ooduu o
asegqojggedAy asegqojgyodAy -10}e1029(|euladju]
\/

0 = (qur)oojdwiy

asegqojg

(Jur)oo4|dun

=

qoig
-10}e1099(J|eUIa)X]

Roeddolg

Figure 1. UML class diagram : Blob software before refactoring.

15

TypeABl obBase andTypeBBl obBase subclasses shown in our example. Specific categories of
clients can then drive from these tailored intermediatekgses and not have to directly
implement any of the virtual functions in the base classfate in most cases.

While the development and use of tailored intermediatelagbes can insulate most types of
derived subclasses from changes to the higher-level Viidnations, a remaining stumbling block
are those inaccessible external subclasses that diremilyedrom the base abstract interface (i.e.
type 'b.i" subclasses as defined above) such agther nal Decor at or Bl ob subclass shown in
Figure 1. Examples of these types of direct subclasses virautdiassic “Composite” or
“Decorator” subclasses that use some form of direct démgan subordinate objects.

Now consider the refactoretl obBase interface and subclasses shown in Figure 2. Here, the
refactoredlypeAB| obBase andTypeBBl obBase intermediate subclasses insulate the concrete
subclassebnt er nal Def aul t TypeABl ob, | nt er nal Def aul t TypeBBl ob, Ext er nal TypeABI ob,
andExt er nal TypeBBI ob from changes to the base interface and they only need to benpéled.
The situation for the necessarily direct concrete deatosmibclasseknt er nal Decor at or Bl ob
andExt er nal Decor at or Bl ob is a little different in that they must be refactored as welbrder to
remain 100 % general decorator classes. Mter nal Decor at or Bl ob subclass is not much of a
problem since it is maintained by the “BlobPack” library dpers and it's current (nonmember)
public interface will likely not be broken due to the refaitg. The problematic subclasses are
those external type ’b.i" subclasses that directly deneeifthe base interface and that are out of
the control of the library developers such asBieer nal Decor at or Bl ob subclass. In the most
general case, these type 'b.i" subclasses will have to beuatlgrefactored by the external
developers. There are strategies where the cost of perfgrsuich external refactorings can be
lessened but avoiding a refactoring altogether is usuaitypossible. We will not discuss specific
strategies for minimizing the cost of such refactorings famgher here.

The goal of this section was to round out the discussion ofuthémpact of changing the virtual
function set in a base class interface in how such a refagg@an be absorbed in the subclasses of
the interface and at what cost. As described above, in magscintermedate subclasses can
insulate many different types of concrete subclasses fignifisant changes to the base class’s
virtual functions and can therefore make such refactoriegsonable and affordable. However, in
the absents of very sophisticated refactoring tools for Gettich simply do not exist at the time of
this writting and may never exist), we can not fully protexteenal subclass developers for such
refactorings. It should be noted, however, that for mangsypf more mature class libraries, that
there should be relatively few examples of direct exter@rhposite” or “Decorator” subclasses
such asxt er nal Decor at or Bl ob which are the most significant problem from a refactoring
standpoint. Note however, that modern Agile software ezwiimg methodologies really mandate
the need for refactoring and therefore we must actively fdachange and the refactorings that
are needed to manage complexity.

16

("")ooqgadA | |dwi

qojggadAL
-|euaayx3y

(***)ooqyodA L dwt

L

qo|gyadAL
-|euayxy

i

_J

-/

(*")ooqgadA | jdwi

qojggedAL
-}jnejagjeuJalju|

\/

(*")oogyadA | jdwi

qo|gyadAL
=}|nejagjeutalu]

\/

0 = (**")ooqgadAyduwi
(10oq ‘yeg)oo|dwi

0 = (***)oo4yedAy jduwi
(1ooq “1eg)oo4|dwi

(10oq “teg)oo|dwi

asegqojggodA]

asegqojgyadAy

qoig
-10}e1029(|RUIBIU|

0=(
jooq “eg)oo-|dwi

esegqolg

(1009 ‘yeg)oo4|dwi

=

qolg
-10}e1093(J|euIa)Xg

Xoeddolg

Figure 2. UML class diagram : Blob software after refactoring.

17

5 The Nonmember Constructor Function Idiom for Concrete Classes

While the key focus of the “pure nonmember function integfaidiom described here is in
connection with abstract C++ classes, it is also applicabtmncrete classes as well. In fact, the
discussion in [4, Item 23] primarily deals with nonmembardtions used with concrete classes. In
the context of abstract classes, the “pure nonmember amatterface” idiom helps to

encapsulate the virtual functions. In the context of comcotasses, the “pure nonmember function
interface” idiom helps to better encapsulate private memkfeor most practical purposes, clients
do not really need to differentate between concrete andaatbsiasses when reference semantics
are being used for the objects in question.

However, the one major difference between an abstract alass concrete class is that you can
construct an object for a concrete class but not for an atisttass (unless you construct an object
from a concrete subclass of the abstract class of courseighwhse we are back to talking about
concrete classes). Therefore, constructors are one ofdfw netails that differentiate concrete
classes and abstract classes. There are many good argdanet@gning and having users call
nonmember constructor functions as apposed to directipngahember constructor functions.

Nonmeber constructor functions can be defined to createednthrobjects by value (i.e. to
construct objects on the stack) or to return (smart) pariedynamically allocated objects. Both
types of nonmember constructor functions are useful iredhfiit contexts. Typically, small objects
that are manipulated with value semantics will be given nemiver constructor functions that
return the created objects by value (and typically use themevalue optimization to achieve good
performance). On the other hand, larger objects that argpulated through reference or pointer
sementics will be given nonmember constructor functioas tturn (smart) pointers to allocated
objects. Experienced C++ developers typically manageettiggamically allocated objects with
some type of smart pointer class [5, Item 13]. Here, we wiréo a smart pointer class that exists
in the Trilinos Teuchos package call&elchos: : RCP [1] which uses a nonember constructor
functionTeuchos: : rcp(rawPt r) . Any other high quality smart pointer class such

boost : : shared_ptr could be used as well as part of this discussion.

The nommeber constructor function idom that creates dyceliyiallocated objects takes the
form:

class Wdget {
Il Declaration of nonnember constructor function
friend RCP<W dget> wi dget();
public:
[l Public interface
voi d display(std::ostreanmg);
private: // or protected
/'l Non-public constructor
Wdget () ;
b

[l Definition of nonnenber constructor function
inline
RCP<W dget > wi dget ()
{
return rcp(new Wdget());

18

The above nonmember constructor function ensures that &i/dget object that is created is
dynamcially allocated and wrapped in BEP object. The convention estabilished here is to
typically use a function name that starts with a lower cager¢e.gwi dget (.. .)) which
corresponds to the class name which begins with an upperletier (e.gW dget). This naming
convention for nonmeber constructor functions is shortraales for well documented client code.

Using this nonmember constructor function, client codetban create and us# dget objects as
follows:

RCP<W dget > w = wi dget ();
w>di spl ay(std: cout);

There are sevaral advantages to the nonmember construntdioh idiom applied to dynamcially
allocated objects over raw callsitew Type(...):

e Nonmember constructor functions can be overloaded or cagivien different names to
make the result of the construction more cléAlihile member constructor functions must
always be overloaded (i.e. taking different argument)listdrandle different construction
states, nonmember constructor functions can actually iffeestht names to make them
more clear. For example, the nonmeber constructor furetioal Shape(hei ght, width
) androundShape(di anmeter) may be more clear than using the direct overloaded
constructorsshape(hei ght, wi dth) andShape(dianeter, diameter) orShape(
di ameter).

e Nonmember constructor functions can directly return srpaihter wrapped objectsThis
avoids having to call an extra function to create the wrapgusdter. For example, compare:

RCP<W dget > w = Teuchos: :rcp(new Wdget(...));
to
RCP<W dget > w = widget(...);

e The template argument(s) in a templated honmember comstriumction can be figured out
automatically by the compiler in many casé@sis avoids having to provide template
arguments when the types can be determined from the forgaireents. If you allocate a
templated class directly, you must always give the tem@egaments explicitly but this
many not be required when using the nonmember function wadlolvs you to replace:

new Generi cW dget <VeryLongAndUgl yI nput Type>(i nput)
with

generi cW dget (i nput)

19

in many situations.

Nonmember constructor functions help to avoid memory ledden exceptions are thrown
For example, the statement:

W dget C we(rcp(new WdgetA(...)), rcp(new WdgetB(...)));

might create a memory leak if an exception is thrown by on@efconstructors (see [5, Item
13]). The reason that a memory leak might occur is that a C+pder is allowed to
evaluatenew Wdget A(...) andnew WdgetB(...) before calling thecp(...)

functions. If the constructdfN dget B(. ..) throws an exception after thé dget A(. . .)
constructor has been invoked but before RGB object wrapping th&V dget A object is
constructed, then the memory createchby W dget A(. ..) will never be reclaimed. If

you use nonmember constructor functions, other other ted,you would have:

WdgetC we(widgetA(...), widgetB(...));

and no memory leaks will be created if an exception is thromwoeseach argument is
returned as a fully formeBCP object which will clean up memory if any exception is thrown.

Nonmember constructor functions increase the encapsulati your classes by not
requiring direct access to private data (see [5, Item 44Jylallowing less duplication of
default member value¥ou can provide many different special case constructatfsowt
cluttering up the class which can just have a general purpmsstructor and or a set of
post-construction initialization functions. This alsdg®geto improve maintaince by only
having a single default constructor that sets default mewdlees only once.

Nonmember constructor functions that return smart poimeapped objects avoids raw
pointers at the application programming lev®aw pointers are the root cause of segfaults
and memory leaks in C++ and as a C++ community we should motreetdevelopment of
an environment where we can avoid them in high-level code ‘{dale pointer operations”

in [3, Section 7.1]).

Nonmember constructor functions allow a single simplytemitclass to create const and
non-const encapsulations of other objedtsr example, the following class and honmember
constructor functions allow clients to safely wrap conggirobjects:

class Wapper {

friend RCP<W apper> nonconst W apper (const RCP<Cont ai ned> &cont ai ned) ;

friend RCP<const Wapper> wrapper(const RCP<const Contained> &contai ned);
public:

RCP<W apper > get Contai ned() { return contained ; }

RCP<const W apper > get Contai ned() const { return contained ; }
private:

RCP<Cont ai ned> cont ai ned_;

W apper (const RCP<Cont ai ned> &cont ai ned)

{ contained_ = contained; }

}s

RCP<W apper > nonconst W apper (const RCP<Cont ai ned> &cont ai ned)

20

{

return rcp(new Wapper (contained));

}

RCP<const Wapper > wrapper (const RCP<const Contai ned> &cont ai ned)

{

return rcp(new Wapper (rcp_const _cast <Cont ai ned>(contai ned)));

Il Note: This const _cast is safe since the const Wapper

Il object that is returned will only give clients an RCP to a

Il const Contained object. However, this assumes that the Wapper
Il class will be witten carefully to protect const of the wapped
/'l object in non-const menber functions.

There are many other alternative ways to develop wrappssetathat protect const of
contained objects. However, a more detained discussiout &lowv to write wrapper classes
that protect the const-ness of contained objects in a nmaalie and safe way is beyond the
scope of the “pure nommeber function interface” idiom whibur main focus here.

21

6 Summary

Here we have presented a sort of composite C++ idiom calketiptive nonmember function
interface” idiom which is composed out of two other idionts hon-virtual interface (NVI) idiom
[5, Item 39] and the “nonmember nonfriend function” idiom [@m 44]. We argue that the
proposed “pure nonmember function interface” idiom is tigidal union of these two other
idioms when issues of code evolution and refactoring arsidened in an environment where
refactoring tools are absent or impractical to use.

In summary, the “nonmember nonfriend function” idiom:

results in maximum code encapsulation,

e provides a uniform (nonmmeber function) client interface,
e avoids problems with overloaded virtual functions,
e avoids problems with default parameter values in virtuatfions,

e insulates clients from refactorings to the virtual funotiiructure of abstract interfaces (and
therefore makes such refactorings reasonable and aflejdabd

e preserves the minimality and integrity of abstract integfeven after numerious changes in
requirements and subsequent refactorings.

While there are many advantages to the “pure nonmemberiduniaterface” idiom, it is not
without some cost. Some of the potential disadvantages ofe@mnmember function interface
are:

e Calling a nonmember function may require explicit namespaglification (or a using
declaration) and/or explicit template arguments in ordeget the right function to be called
which is almost never needed for a non-template memberiamcall.

e The implementations of nonmember friend functions aretle ihore verbose than member
functions. For example, one has to explicitly qualify théegbargument (i.ebl ob) instead
of an implicitt hi s->. Some programmers may consider it an advantage to be mdieitexp
however and some languages (e.g. Python and Perl) alwayiseexplicit qualification to
the object in member function implementations.

e Documentation may become more complicated to develop aebasince it is not clear
where to document the behavior of a function. Should the hecuation be in the public
nonmember function (better for the client) or should it béhi@a declaration of the
protected/private virtual function (better for subclaspiementors)? Clearly some
documentation guidelines need to be worked out in order doesd these issues.

Since there are some disadvantages to developing and ugimg aonmember function interface
for an abstract or concrete class, one should not autortatateoose it over a more common
member function interface. If a particular class is not Widesed, is not widely accessible to

22

clients, and/or is unlikely to change, then developing & manmember function interface may be
overkill and not worth the (all be it small) extra work. Hovesyin the face of uncertainty one
should lean toward using the pure nonmember function iterfdiom since it allows great
freedom in refactoring code with minimal impact on clients.

23

References

[1] R. A. Bartlett. Teuchos::RefCountPtr : An intruductitmthe Trilinos smart reference-counted
pointer class for (almost) automatic dynamic memory mameage in C++. Technical report
SANDO04-3268, Sandia National Laboratories, Albuquerdimy Mexico 87185 and
Livermore, California 94550, 2004.

[2] S. Dewhurst.C++ Gotchas: Avoiding Common Problems in Coding and Desiyddison
Wesley, 2003.

[3] S. McConnell.Code Complete: 2nd EditiorMicrosoft Press, 2004.
[4] S. Meyers.Effective C++: Third Edition Addison Wesley, 2005.

[5] H. Sutter and A. AlexandrescC++ Coding Standards: 101 Rules, Guidelines and Best
Preactices Addison Wesley, 2005.

24

A Member verses Nonmember Functions in C++

It is instructive to consider the implications of member aoetmember functions in C++ and how
these differ with other object-oriented languages. Spdifi, we will consider three different
object-oriented languages: C++, Java, and Python. We cadlyrclassify languages as more
strongly typed and less strongly typed. In a stronger typaduage such as C++ and Java, the
semantics of an object are determined at compile time. Faomele, in C++ and Java, the set of
member functions that are callable on a class objectHikbBase is known before the program
even starts to execute. In fact, all of the member functiona €++ and Java class must be
declared in a single header file within a single class detiterge.g.cl ass Bl obBase { ...

1)L In Python, however, a member function can be added to actaj@ny time at runtime
while a Python program is executing and therefore calling@aration on an object through
member function results in no lack of flexibility like it doasC++. As for member and
nonmember functions, Python and C++ can have nonmembetidnaavhile Java can not.
Therefore, when one talks about member and nonmember dascttonventions used in Java are
mostly meaningless.

Okay, so C++ and Python both allow member and nonmemberifunsctSo why is there not a
“nonfriend nonmember function” idiom for Python like thesgfor C++7? To begin to answer this
guestion, first consider that Python does not have any trogpsalation. If any piece of Python
code wants to grab the private data for a object, they cardjuit Therefore, there are no features
like private andfriend in a language like Python without encapsulation. Anoth#ence
between C++ and Python is that in Python, any code can add aneember function to any
Python object at any time dynamically at runtime. Thereféyghon code that uses the member
function syntaxobj . f 0oo() to invoke some operation is no less flexible then using nonbeem
function syntax likef oo(obj) . Therefore, since many programmers think that object tatem
means calling member functions suchoasg. f 0o(), there is no disadvantage to allowing them to
do so in a language like Python.

The situation for C++ is quite different. By having the cliémsist on using member function
syntax such asbj . f 0o(), one is already placing several restrictions on how thatadjos is
implemented and gets invoked. In particular, having a tlise a member function (e.g.

obj . foo()) to invoke an operation on a C++ object requires that:

1. The function must be declared as a member function on #ss ah a single declaration (i.e.

withincl ass G assName { ... };)inasingle file. Sure the function’s definition can
can be redefined by some subclass but the object itself migshaiae how to perform the
operation.

2. The function must be set at compile time and can not chadgeamically.

3. A member function can access private and producted masnabertherefore errodes
encapsulation, even if none of the non-public members aresaed initially. If
encapsulation by gentleman’s agreement is sufficient fartiien you are working with the
wrong programming language and perhaps Perl or Python rogghtore to your liking.

1Some of the functions callable on a class object can of cdagskefined in base classes but that does not change the
point of the discussion here.

25

On the other hand, using the nonmember function syntax inf@efobj) opens the door for a
great many different possibilities for how the operatiotsgavoked. Some of the possibilities for
the implementation of a nonmember function are:

1. The nonmember function could be a direct call to the merhibtion on an object (e.g.
foo(obj) means the same thing algj . f 0o()). Therefore, the use of the nonmember
function is as least a flexible as directly calling a membecfion. In addition, the
nonmember function syntax almost always uses less ASCiactexrs. For example, writing
foo(obj) only takes eight ASCII characters to write, whilj . f oo() takes nine ASCII
characters. This is a trival difference but the point is made

2. The nonmember function could perform a few different s/petasks before calling the
member function on some object. With this approach, we cdrdédterent layers of
capabilities in a distributed way.

3. The nonmember function could actually be involved in ehistjrated type of multi-dispatch
system where the exact operation to call would be deternbyete traits of the objects
involved at runtime. For example, a nonmember functiongisilti-dispatch like
foo(obj A obj B) could call one of a number of different operations based eriythes or
properties of the objecthj A andobj B.

In addition, nonmember functions that are declared in theesaamespace as the types of the
objects in their argument lists will be automatically lodkep and called without requiring
namespace qualification (this is know as Argument Dependsokup (ADL))?.

But does not object-oriented programming mean that allaijmers on objects are called through
member functions? Some programmings (and users) migtdrtdlyrexpect and even insist on this
but many current object-oriented C++ experts would notegFer example, Scott Meyers in [4,
Item 23] states:

Object-oriented principles dictate that data and the fanstthat operate on them
should be bundled together, and that suggests that the méumogon is a better
choice. Unfortunately, this suggestion is incorrect. b&sed on a misunderstanding of
what object-orientation means.

If nonmember functions are so less flexible than member ifmmst then why even bother using
member functions at all? Why not just use nonmember friendtfans in the place of member
functions as is advocated in the “pure nonmember functiterfiice” idiom for all C++ classes?
Well, there are a few reasons that you would want to just usalme functions declared and
defined within the class. First, some functions like thegassient operator are required to be
member functions as are a few other operator functions.dsetltases, you have not choice but the
use public member functions. Second, if the C++ classes gwadting are expected to be very
stable or if changes to these classes can be easily prodagatk clients using the class, then
using member functions is attractive since it just involiess typing, uses less ASCII characters
and may be easier to follow.

2|n some types of templated code, calling a nonmember fumatithout namespace qualification does not always
work but there are usually various work arounds to make tlisageable.

26

Friends and member functions are a fundamental part of tpeementation of true encapsulation
in C++. They help to provide a system by which we can enforaapsulation while still allowing
programs to be written to do things. By requiring that fristmehd member functions be declared
right in a class declaration, one can easily enumerate aoll ttown all code that has access to
private members which facilitates safe code refactoringghvis the whole reason for
encapsulation in the first plat.eTherefore, we should think about friends and member fanstin
C++ as the basic tools for implementing encapsulation angmmarily as interfaces for clients.
By adopting the “pure nonmember function interface” idiome relieve clients from having to
worry about whether a function needs to acces encapsulatadid which case it needs to be a
friend) or not (in which case it does not need to be a friendhictvis not really any of their
business anyway.

Other than for a bit of laziness and personal preference ffiting obj . f 0o() as apposed to
foo(obj), there really is not a strong argument against using thee*ponmember function
interface” idiom.

Since Java does not have the concept of nonmember funatioes;ould use a separate static class
to declare these non-privileged functions and one couletbee have the same benefits as in C++
when using the “pure nonmember function interface” idionowver, since there would no longer
be any namespace lookup, clients would have to explicitblifyuthe static class’s name when
calling the functions. Also, there are many high-qualitiactoring tools for Java that make it

much easier to propagate refactorings to client code. Tdrerghe lack of good refactoring tools,
the convenience of automatic namespace lookup, and otherssnake the “nonmember function
interface” more attractive for C++ than for Java or otheregbjoriented languages.

3|f code never changed then why would anyone care about efatimm?

27

B Relationship between the Pure Nonmember Function Interfae
Idiom and Handle Classes in C++

A handle class is a concrete class that is meant to mimic tjeetothat it wraps through a pointer
to that object. Typically, a handle class is used to wrap geoblthat uses reference or pointer
semantics, such as objects represented through an alisteafzice. For example, a simple handle
class for &Bl obBase object might look like:

namespace Bl obPack {

class Blob {
public
Bl ob(RCP<BI obBase> &blob) : blob_(blob) {}
void foo(const Bar &bar, bool flag) { foo(*blob_,bar,flag); }
voi d foo(const Bar &bar, bool flag) const { foo(*blob_, bar,flag); }
private:
RCP<BI ohBase> bl ob_;

b

} I/ namespace Bl obPack

The above handle class allows for multiple handle objectseference the same underlying

Bl obBase object and a handle object can be reassigned after corestruthere are many nuances
to consider when one develops a handle class. However, iledet@atment of handle classes is
beyond the scope of this discussion.

The “pure nonmember function interface” idiom and the “Hahaliom are similar in that both
provide a layer of indirection between clients and the djpation of the virtual function set which
insulates clients from changes to the abstract interface.

However, the “pure nonmember function interface” idiomeodf some potential benefits over a
strict handle interface that uses member functions on thdlbalass:

1. Nonmember functions can be split into multiple files whilenfoer functions on a handle
class can natSplitting capabilities across multiple files allows foegter segmentation in
the capability set for a set of objects, it reduces unnecgsisgpendences and allows for
growth in the set of capabilities without impacting curreli¢nts (or even require them to be
recompiled) (see [4, Item 23] a specific discussion of ttege3. However, if most functions
defined on the handle object are expressed as nonmembédofig¢hen this would allow
for the same flexibility to segment capabilities and thidytem is eliminated.

2. Nonmember functions do not suffer from some of the more siogfaspects of handle
classes For example, a semantics of a handle class must be carspdlied out as to how
objects can be shared, what the copy constructor and assigroperator functions do, and
other such details. Nonmember functions do not have to digfalamy of these issues.

On the other hand, if extra state needs to be added to thet ab@der to perform extended
operations, then using a handle class might be an attraggppeach. However, if the handle class

28

allows multiple handle objects or other clients to pointiie same underlying object, then
allowing for extra data in the handle object can be riskyeitihat data can easily be invalidated in
many cases.

There are cases where the syntactic advantages of usinglie ln¢éass are compelling and
therefore handles should be used in these cases. Even itleeldass is to be used, most
operations performed with handle objects should be impteeteas nonmember functions for
reasons of avoiding bloat of the handle class and allowingnfixemental and distributed
capabilities. Of course, if one allows for both the use of henfunctions on the handle class and
nonmember functions, then this brings up all of the sameesag it did for the interface class
itself. However, since a handle class should almost nevesbd as a means of interoperability,
one can be more lenient about what functions are added as endanigtions and therefore handle
classes used as a convenience can tolerate refactoririgs doad tolerate more bloat. Additionally,
since the member functions on a handle class should nevdmpnedeged access to the underlying
object, there will never need to change the handle clasgsfate; only augmentations will be
required. Therefore, the handle idiom and the pure nommefahbetion idiom can be used
together and complement each other.

29

DISTRIBUTION:

2 MS 9018 Central Technical Files, 8944
2 MS 0899 Technical Library, 4536

30

v1.27

@ Sandia National Laboratories

