Overview of Software Challenges in CSE

Roscoe A. Bartlett, Oak Ridge National Laboratory

10/08/2013

Introduction

The Computation Science and Engineering (CSE)
community is facing a significant set of challenges
on many fronts with respect to the development and
manipulation of CSE software. The primary goal of
this short paper is only to identify, categorize and
give name to these various challenges to help frame
the possible solutions and research directions.

SE Challenges in CSE

This overall problem is composed out of the
aggregation of a number of challenges in different
areas which include:

e The challenge of expanding complexity in
CSE algorithms: CSE algorithms are
becoming more complex with greater varieties
of algorithms being produced by different
organizations and a large amount of this
technology must be integrated together for the
greatest effect.

e The challenge of expanding complexity in
CSE/HPC computer architectures:
Exascale architectures will be less reliable and
require more specialized algorithmic and
programming techniques.

e The challenge of CSE developer software
knowledge and skills: There is a deep and
fundamental deficit of basic software knowledge
and skills in the CSE community that hinders
even basic research. This applies at every level
from hands-on developers to decision makers at
the highest level and in between.

e The challenge of programming languages
and supporting tools for CSE: The current
generation of programming languages,
supporting tools, and approaches do not well
support the current CSE community and will
not adequately address the growing complexity
in algorithms & architectures.

e The challenge of CSE software quality,
verification and testing: The current CSE
community is not creating codes with sufficient

verification and validation foundations to
provide credible results (and this challenge can
only be addressed if the other challenges are
also adequately addressed).

e The challenge of CSE software life-cycle
and integration models: The current CSE
community lacks sufficient knowledge, skills,
and discipline in software engineering life-cycle
and software integration processes to address
the growing complexity in multi-institution
algorithms and architectures work.

e The challenge of CSE software project
management: Most CSE projects are
organized by sponsors that don’t understand
the realities of high-risk technically challenging
software development which leads to incorrect
perceptions of success and failure that damages
every aspect of the CSE community.

In the end, all of the efforts in CSE are ultimately
directed towards the goal of creating a new
generation of CSE codes that will be able to more
accurately predict the behavior of more complex
phenomena at finer fidelity with greater accuracy
and credibility. More complex algorithms of a
greater variety are constantly being developed in
order to overcome some existing bottleneck in
performance or capability. The best work in
algorithms and architectures must all be integrated
together into single CSE codes in order to be able to
meet the full potential of CSE in creating predictive
CSE tools. These capabilities will be critical in
order to produce credible results that can then be
used to make critical decisions in climate, energy,
and the many other areas that will critically impact
coming generations. Any one single organization
can not afford to hire the expertise to create and
maintain software for the leading methods in all of
these areas and therefore multi-institution
collaboration and reuse will be necessary.

Background and related work

Some work has been done to study the software
engineering (SE) issues in CSE and to characterize



the SE challenges. One set of authors warned of a
coming crisis in computational science [10] and that
computational science demands a new

paradigm [11]. These and some related papers were
based on a number of case studies of projects in the
CSE community [5, 4, 3]. These papers defined and
described three types of challenges faced by CSE a)
the performance challenge (producing
high-performance, computers), b) the programming
challenge (programming for complex computers),
and c) the prediction challenge (developing truly
predictive complex application codes). The main
focus of these papers was on the prediction
challenge where the authors argued for better
methods and more effort and discipline in basic
verification and validation (V&V) and to some
lesser extent argued that software engineering
practices in CSE projects needed to be improved to
meet the prediction challenge. However, one can
argue that without addressing the other challenges
listed above, the CSE community will never be able
to adequately address the prediction challenge.
Other work has also been done to characterize the
makeup of the current CSE community [5, 4, 3, §].
These papers describe the large “communication
gap” that exists between the CSE and SE
communities [6]. Many of these papers also
characterize a large productivity problem and an
expertise gap [6]. This is consistent with with the
challenges listed above. Also, a number of
workshops have have been organized bringing
together individuals from the SE and CSE
communities, for example [2].

Summary and Research Opportunities

The CSE community needs to recognize and address
the various SE related challenges facing the CSE
community outlined in this short paper.
Recognition of these challanges can then help to
organize and prioritize research into possible
solutions. The most general approaches should
likely be to carefully apply modern Lean/Agile SE
technical and management methods to CSE projects
(19, 7, 12, 1]. Core Agile practices include
continuous integration (CI), test-driven development
(TDD), (continuous) design improvement, collective
code ownership, and coding standards.

References

[1] K. Beck. Extreme Programming (Second
Edition). Addison Wesley, 2005.
[2] J Carver. Report from the second international

[10]

[11]

[12]

workshop on software engineering for
computational science and engineering (se-cse
09). Computing in Science Engineering,
PP(99):1 -1, 20009.

J. Carver, L. Hochsein, R. Kendall,

T. Nakamura, M. Zelkowitz, V. Basili, and

D. Post. Observations about software
development for high end computing. Technical
report, Univ. of Marlyland, 2005.

J. Carver, R. Kendall, S. Squires, and D. Post.
Software development environments for
scientific and engineering software: A series of
case studies. ICSEQ7, 2007.

Stuart Faulk, Eugene Loh, Michael L. Van De
Vanter, Susan Squires, and Lawrence G. Votta.
Scientific computing’s productivity gridlock:
How software engineering can help. Computing
in Science Engineering, 11(6):30 -39, nov.-dec.
2009.

Stuart Faulk, Eugene Loh, Michael L. Van De
Vanter, Susan Squires, and Lawrence G. Votta.
Scientific computing’s productivity gridlock:
How software engineering can help. Computing
in Science Engineering, 11(6):30 -39, nov.-dec.
2009.

R. Martin. Agile Software Development
(Principles, Patterns, and Practices). Prentice
Hall, 2003.

Zeeya Merali. Why scientific computing does
not compute. Nature, 467:775 —777, 2010.

M. Poppendieck and T. Poppendieck.
Implementing Lean Software Development.
Addison Wesley, 2007.

D. Post. The coming crisis in computational
science. Technical report LA-UR-04-0388, Las
Alamos Laboratories, 2004.

D. Post and L. Votta. Computational science
demands and new paradigm. Physics Today,
58(1):35—-41, 2005.

K. Schwaber and M. Beedle. Agile Software
Development with Scrum. Prentice Hall, 2002.



