
Fortran Isolates the CSE Community

Roscoe A. Bartlett, Oak Ridge National Laboratory

10/08/2013

Introduction

The continued usage of Fortran as a dominant
programming language isolates the computational
science & engineering (CSE) community and hinders
the learning and adoption of modern software
engineering methods. The issue is not primarily that
Fortran is not suitable for developing many different
types of software. Indeed, the are many examples of
quality CSE software written in Fortran that can
legitimately be considered to be “self-sustaining
software” (i.e. clean design and code, well tested,
minimal controlled dependencies, etc., see [1]).

The problem is that there are many CSE
development groups and communities that only
know Fortran and are therefore isolated from the
broader software development community where
Fortran usage is extremely low (ranked 24th in the
TIOBE Index from Nov. 2013 [11]). Other problems
with Fortran will not be discussed in the short paper
(e.g. slowness to implement the 2003 standard, lack
of an quality open source compiler for Fortran 2003,
clumsy and inefficient text processing, etc.).

The problem is that if a Fortran programmer wants
to learn about quality modern software development
techniques and practices (e.g. continuous
integration, unit testing, test-driven development
(TDD), emergent object-oriented design,
refactoring, etc. [2, 9, 8]), to what resources or
references do they go? There are few (if any) quality
references, training courses or instructors on these
topics that are accessible to Fortran-only
programmers. The issue is that all of the quality
books, articles, training courses on all of these
topics have examples in mainstream languages like
C++ and Java and not Fortran. Mainstream
languages like C++, Java, Python, etc. are so
different from Fortran that they are largely
inaccessible to Fortran-only CSE programmers and
therefore this material is also inaccessible for
Fortran-only programmers.

Example: Unit Testing

One example of the problem is the lack of unit

testing and test-driven development (TDD) by
Fortran-only developers. While the research and
data supporting the effectiveness of unit testing and
TDD has been around for many years [10, 3, 12, 7],
the usage of these very successful approaches is very
low in the Fortran CSE development community.
This claim is backed up by personal experience, web
posts, web searches, and observations by other
authors. One interesting data point is that a Google
search of “Fortran Unit Test” (on 10/4/2013) brings
up a limited number of relevant search results but
the top result is for the FRUIT Fortran Unit Test
framework [5] (written in Ruby). Right on the main
page for FRUIT is a quote from FRUIT’s author
Andrew Hang Chen which states:

Most of the FORTRAN are important
in nature, used in nuclear and aerospace
codes, etc, and maintained and written
actively. Please help to bring TDD
practices to the FORTRAN community.
The change could be very hard, personally,
I quit, since I could not make the change. I
hope your organization will be successful.

This is a quote from the developer and advocate of
the seemingly most prevalent Fortran unit test
harness software (according to Google search
ranking).
Another Google search for “Fortran Unit Test
tutorial” produces very little in relevant results.
One exception is from NASA for pFUnit [6]. In the
case of pFUnit, the tutorial shows the weakness of
using Fortran for unit testing due to lack of
exception handling resulting in many problems.
Another example found is for fUnit [4] (also written
in Ruby). The very short tutorial for fUnit
describes some very rigid usage requirements and
other shortcomings.
The above short survey of Fortran unit testing
software and resources suggests that the
sophistication and usage of unit testing software in
Fortran are low compared to other more widely used
modern programming languages. It is difficult to

1



determine why. Is it because one cannot write a
quality unit test harness in raw Fortran and
Fortran-only programs will not rely on a tool not
written in Fortran? Is it because there is little to no
demand for a quality Fortran unit test harness
because those using Fortran in the CSE community
have not been educated to know about unit testing
and its benefits? This would be an interesting issue
to research on its own.

Summary and Research Opportunities

The lack of books, articles, training courses,
instructors, tutorials and tools tailored to Fortran
serves to discourage the adoption of modern
software development methods and is a significant
factor in holding back the CSE community. The
typical Fortran-only CSE developer from a
non-software background lacks the foundation to go
out and learn modern software development
methods in the absence of such material geared
toward Fortran.

However, this short paper is not arguing that all
usage of Fortran is bad or is not appropriate for
many different types of CSE programming projects.
CSE developers who know other programming
languages and have access to modern resources and
tools have little problem applying good software
engineering to software written in Fortran, including
using test-driven development (TDD) and good unit
testing. It is just that the driving tools are not
Fortran based. For example, the authoer just
recently wrote a bit of Fortran software that was
well unit tested using TDD using a C++ unit test
harness in a mixed language program. A typical
Fortran-only programmer would likely not have
been able to produce that level quality of testing
and maintainability using existing Fortran unit test
harness software.

There are two possible approaches for addressing
this problem. One option is to make a significant
investment in developing a set of training materials
and quality tools for modern software development
methods, such as for unit testing, tailored to
Fortran. However, given the relatively small market
of Fortran programmers and the seeming lack of
interest, it is unlikely that the software community
will make the investment in creating these materials
and tools. The other option is to try to shift a
majority of CSE projects and development groups
away from Fortran as the single dominant
programming language. While there are no ideal
alternatives for a primary programming language
for most CSE projects, one attractive approach is to
simplify the usage of C++ for CSE developers. A

proposal for how to do that is the focus of another
position paper “Safe Domain-Specific Languages in
C++11 for CSE using Compiler-Embedded Analysis
Rules”.

References

[1] R. A. Bartlett, Michael A. Heroux, and
James M. Willenbring. Overview of the tribits
lifecycle model: A lean/agile software lifecycle
model for research-based computational science
and engineering software. e-science, 2012 IEEE
8th International Conference on E-Science:1–8,
2012.

[2] K. Beck. Extreme Programming (Second
Edition). Addison Wesley, 2005.

[3] Thirumalesh Bhat and Nachiappan Nagappan.
Evaluating the efficacy of test-driven
development: industrial case studies. In
Proceedings of the 2006 ACM/IEEE
international symposium on Empirical software
engineering, ISESE ’06, pages 356–363, New
York, NY, USA, 2006. ACM.

[4] Jason Blevins. Fortran Unit Testing with fUnit.
www2.cisl.ucar.edu/sites/default/files/pFUnitTutorial.pdf,
2012. [Online; accessed 07-October-2013].

[5] Andrew Hang Chen. FORTRAN Unit Test
Framework (FRUIT).
http://sourceforge.net/projects/fortranxunit/,
2012. [Online; accessed 07-October-2013].

[6] Tom Clune. Parallel Fortran unit testing
framework.
www2.cisl.ucar.edu/sites/default/files/pFUnitTutorial.pdf,
2012. [Online; accessed 07-October-2013].

[7] Hakan Erdogmus, Maurizio Morisio, and Marco
Torchiano. On the effectiveness of the test-first
approach to programming. IEEE Transactions
on Software Engineering, 31(3):226–237, 2005.

[8] M. Feathers. Working Effectively with Legacy
Code. Addison Wesley, 2005.

[9] R. Martin. Agile Software Development
(Principles, Patterns, and Practices). Prentice
Hall, 2003.

[10] S. McConnell. Code Complete: Second Edition.
Microsoft Press, 2004.

[11] TIOBE Software. TIOBE Programming
Community Index for September 2013.
www.tiobe.com/index.php/content/paperinfo/tpci/,
2013. [Online; accessed 07-October-2013].

[12] D. Talby, A. Keren, O. Hazzan, and
Y. Dubinsky. Agile software testing in a
large-scale project. Software, IEEE,
23(4):30–37, 2006.


