
Integration Strategies for Computational Science & Engineering Software

Roscoe A. Bartlett
Department of Optimization and Uncertainty Qualification

Sandia National Laboratories
PO Box 5800, Albuquerque, NM 87185-1318
http://www.cs.sandia.gov/∼rabartl

rabartl@sandia.gov

Abstract

In order to make significant progress in solving chal-
lenging problems in Computational Science & Engineering
(CS&E), we need to integrate a large amount of software
written by different groups of experts. Modern Lean/Agile
methodologies would seem to provide a good foundation for
research-driven development of complex CS&E software.
Here, we describe issues related to the integration of CS&E
software and propose different integration processes tai-
lored to the special challenges in CS&E. We also describe
practical experience with some of these tailored integration
strategies related to Trilinos and some of its important ap-
plication customers at Sandia National Labs.

1. Introduction

One of the major bottlenecks that limits the use of state-
of-the-art algorithms from various disciplines of CS&E is
software engineering and integration. We can no longer
expect a single group of developers to create and main-
tain cutting-edge CS&E software which includes the best in
meshing [8], discretizations [1], adaptivity [21], advanced
(embedded) numerical algorithms [3], and new computer
architectures [13]. Software written by experts from a va-
riety of different specialties and organizations needs to be
integrated together in order to apply the full state-of-the-
art in CS&E. We need to consider how to adapt Lean/Agile
software engineering methods [6, 7, 9, 11, 15, 18, 20] to
tailor them to the CS&E environment.

The scope of the software that needs to be integrated into
a single complex CS&E application is too large to realis-
tically be developed under a single blanket of full contin-
uous integration (CI) [9]. The CS&E software partition-
ing model discussed in this paper involves one or more
applications (APPs) and a number of different third-party
libraries (TPLs), forming Customer/Supplier relationships

[10, Chapter 14]. An APP typically represents a complete
capability that is suited to solve an important problem. Each
TPL represents a different type of state-of-the-art CS&E ca-
pability used by the APP. It is assumed that the APP and
each TPL are developed under their own separate CI pro-
cesses.

Several different software integration strategies for
CS&E software are described as well as a proposed vari-
ation on CI that may be well suited to many especially chal-
lenging CS&E environments. Each of these approaches
is outlined and some experience with different integration
strategies at Sandia National Labs is described. Each of
these integration strategies will be appropriate in different
situations and various criteria should be considered when
selecting a specific software integration strategy.

The trend in CS&E is to develop more and more com-
plex algorithms and software so the problem of software
engineering and integration will only become more critical
in the coming years. We need to inject stronger software
engineering discipline tailored to the modern CS&E envi-
ronment if we are going to be able to integrate and apply
the best that CS&E has to offer.

2. Overview of the CS&E software engineering
environment

Here, some of the special issues that make large-scale
CS&E software development and integration challenging
are described. While the development of CS&E software in
other environments is also important, this paper deals more
specifically with CS&E development environments which
include both research and applied activities, such as is com-
mon in a national labs setting like Sandia National Labs
(SNL). Such CS&E environments are complex, especially
with regard to software integration issues, for a number of
reasons.

a) CS&E is a mix of production applications and al-

http://www.cs.sandia.gov/~rabartl
rabartl@sandia.gov


gorithms research. Conducting cutting-edge research that
impacts important real applications is challenging. With
algorithm research you want to have unfettered access to
change the software at will in order to quickly try new ideas.
However, production development requires more careful
controls to insure that important capabilities are preserved
with every change. It is very difficult to integrate a mix
of software with different maturity levels. However, mod-
ern Lean/Agile methods provide a means to develop high-
quality research-driven software from the very beginning of
its life cycle and therefore allow it to be integrated with pro-
duction software throughout.

b) CS&E practitioners have a mix of backgrounds in sci-
ence, physics, applied math, computer science, and other
disciplines. This large variability in specialized back-
grounds makes collaborative software development diffi-
cult. Each CS&E discipline often has a complex set of spe-
cialized theory and jargon and it can be hard to come up
with common models that can be used to form the basis for
integrated software. The ideas from Domain Driven Design
(DDD) [10] need to be carefully applied to CS&E to help
overcome these integration and maintenance difficulties.

c) Great variability exists between CS&E practitioners
in knowledge and interest of basic software engineering is-
sues like coding standards and development practices. For
new algorithms to have real impact in CS&E, they must be
implemented in high-quality software and be used to solve
problems people care about. However, it is common for
CS&E practitioners to be passionate about the particular
discipline they specialize in, but have very little interest in
important software engineering issues. Yet, in many CS&E
organizations, these individuals are expected to be able to
write software that will be used to solve real problems but
there is a natural tendency for many of these individuals to
create poor-quality software. Low quality software is dif-
ficult to keep integrated and severely damages the entire
CS&E software development process.

d) CS&E involves a variety of complex algorithms. Not
even the best single PhD can understand all of the differ-
ent areas well eno¡ugh to write software for state-of-the-art
algorithms for each area. This goes well beyond the basic
computer science knowledge. Therefore, only a handful of
specialized PhD developers can create and modify a com-
plex CS&E algorithm in their discipline. The complexity
of these algorithms also presents software integration chal-
lenges because it can be difficult to construct interoperable
interfaces for such algorithms.

e) The CS&E environment places a strong emphasis on
performance involving floating-point computations. CS&E
computations are often performed on very expensive mas-
sively parallel computers and can take a long time to run.
Therefore, computation performance is often a critical fac-
tor in CS&E software. Floating-point computations are the

cornerstone of CS&E software. Even with formal floating-
point standards like IEEE 754 in place, the strong need for
high flop rates, along with differences in computer architec-
tures and system software, negates the possibility of strictly
defining the binary output from such programs [12]. There-
fore, one typically expects to get different binary answers
when porting the software to different platforms and even
on the same platform when changing compiler optimiza-
tion options. This presents great challenges in developing
strong portable test suites and in performing fundamental
software verification. Floating-point creates some difficult
software integration challenges, especially when combined
with other factors.

f) Complex nonlinear models are commonly used in
CS&E and present a number of challenges in the develop-
ment and maintenance of CS&E software. For example,
a set of nonlinear equations can have more than one solu-
tion [16] and algorithms that solve these equations can find
any one of these solutions or no solution at all. Nonlinear
models can also posses bifurcations [5, 22], non-convexities
[16], ill-conditioning [16] and other phenomenon that can
make the behavior of numerical algorithms on these prob-
lems quite unpredictable. In some cases, these phenomenon
can result in large changes in the behavior and output from
algorithms involving these models. Therefore, the inclusion
of complex nonlinear models and functions, coupled with
floating-point computations, present some unique software
engineering and integration challenges for CS&E software.

g) Close collaboration between CS&E practitioners from
different disciplines is needed to solve hard problems. Of-
ten, practitioners from several different disciplines must
work together on a single integrated code base in order
to develop software and to work through issues that arise
in hard problems. Oftentimes, significant development is
needed in order to address the underlying issues. Therefore,
each specialized CS&E developer needs to have access to a
very recent version of their APP and TPL codes. This type
of cross-discipline collaborative effort is massively easier if
the up-to-date sources of the APP and relevant TPLs can be
developed together in many cases. The need to have access
to the integrated development versions of both the APP and
the TPL presents a challenge for common models of soft-
ware integration being advocated in the broader software
engineering community.

The combination of some of the special properties of
CS&E software described above make large-scale software
integration very difficult. Some of the special software in-
tegration challenges are described in more detail in Section
4.



3. Overview of general software integration ap-
proaches

Before discussing the special software integration chal-
lenges for CS&E software in Section 4, first let’s consider
the current generation of Agile integration approaches. The
foundation for modern Agile software integration meth-
ods isContinuous Integration(CI) [9]. CI comes in two
main varieties; synchronous CI and asynchronous CI.Syn-
chronous CI(SCI) requires developers to fully integrate and
test their changes before each check-in.Asynchronous CI
(ACI) involves developers doing much less thorough test-
ing before each check-in. A CI server detects a check-in,
proceeds to checkout, build, and run a more substantial test
suite, and then informs developers if anything fails. SCI is
the premiere CI method in terms of code stability, but ACI
can scale to larger projects at the cost of greater code insta-
bility. In projects where ACI starts to produce failing builds
too often, other CI-like methods may be considered [17].

At some point the size of a project will become too
large to realistically apply any reasonable single CI method
and other less-than-full CI methods must be considered. In
these cases, the best approach is to partition the code base
into distinct pieces with carefully designed interfaces and
then to define appropriate less-than-full CI methods to keep
the software integrated on a reasonable (but not continu-
ous) schedule. Eric Evans in [10, Chapter 14] describes a
number of different code partitioning and staged integration
strategies. The strategy that is most applicable to the typeof
CS&E software environment being considered in this paper
is the Customer/Supplier relationship where the APP and
TPL play the roles of the customer and supplier, respec-
tively.

The key to the success of the Customer/Supplier rela-
tionship, as stated in [10, Chapter 14], is:

Jointly develop automated acceptance tests that
will validate the interface expected. Add these
tests to the upstream team’s test suite, to be run
as part of its continuous integration. This test-
ing will free the upstream team to make changes
without fear of side effects downstream.

The foundation of Customer/Supplier therefore is the
automated acceptance test suite which is co-developed
through a collaboration between the customer and the sup-
plier which becomes part of the supplier’s own test suite.
While a co-developed acceptance test suite can be very ef-
fective in helping to preserve the interface specification be-
tween the customer (APP) and supplier (TPL) codes, it is
questionable to what extent such a test suite can effectively
substitute in place for the customer’s own full test suite in
the context of CS&E software. It is clear that every supplier
code should contain integrated tests that attempt to fully

validate the software against the customer’s requirements.
However, as stated in Section 2 and argued more strongly
in the next section, CS&E software presents a special set of
challenges that makes it very difficult, if not impossible, to
write an affordable effective acceptance test suite that isin-
dependent of the APP code’s own test suite. Note that in the
end, the only test suite that ultimately matters is the APP’s.
Customers and end users will be unimpressed if all of the
TPL’s acceptance and other tests pass with flying colors but
a significant number of the customer’s own tests fail after
an upgrade of the TPL. The primary purpose of the TPL’s
acceptance and other tests is to try to reduce the risk and
likelihood that changes to the TPL will break the APP, but
they are in no way substitutes for the APP’s own test suite,
especially in CS&E software.

4. Special software integration challenges in
CS&E software

CS&E software is more fundamentally difficult to keep
integrated than in almost any other domain. Some of the
contributing factors for this were outlined in Section 2.
The use of a Customer/Supplier co-developed acceptance
test suite, which is the foundation for the decoupled Cus-
tomer/Supplier relationship described in Section 3, will be
fundamentally less effective in advanced CS&E environ-
ments. While all of the issues discussed in Section 2 con-
tribute to this, it is the issues related to a) complex algo-
rithms, b) complex nonlinear models and functions, and
c) non-unique floating-point computations that change be-
tween compilers and platforms that are the most significant.
These three issues conspire together to make it very diffi-
cult to write good tests for CS&E software and then to keep
them validated as changes are made.

The influence of non-unique floating-point computations
in the presence of these other factors has lead CS&E devel-
opers to declare a special type of failing test; thediff ing test.
A test is declared todiff when the code seems to run cor-
rectly but some numerical error check exceeds the allowed
tolerance. Many CS&E developers argue that a diffing test
is somehow less serious than an otherwise failing test. How-
ever, there is very little practical difference between a diff-
ing test and a failing test and any casual dealing with such
issues can compromise the very foundation of CS&E soft-
ware verification. A diffing test must be scrutinized and
fixed in the same way as any other failing test.

To demonstrate these problems inherent in CS&E soft-
ware, consider a complex transient simulation based on a
model derived from a complex set discretized partial differ-
ential equations (PDEs). Many of these models exhibit all
of the complex behavior mentioned in Section 2. In these
types of problems, seemingly small changes in the structure
of the algorithms amplified by variations in floating-point



computations can cause large changes in the behavior of the
algorithms and result in large changes in the final output
which may cause even well designed tests to diff. In many
cases, changes to complex CS&E algorithms that actually
improve solution performance may cause diffs. Every such
diff that occurs after the integration of a new TPL release
must be carefully addressed. It is not uncommon for an up-
grade of a TPL to cause dozens or even hundreds of diffing
tests which then take an extreme amount of effort to resolve.

Because of the complex nature of the CS&E environ-
ment describe above, it is very costly and/or ineffective to
develop an acceptance test suite that can successfully take
the place of the APP’s own test suite. Therefore, the most
effective and affordable acceptance test suite for a TPL is
often the APP’s own test suite.

5. Software integration approaches for CS&E
software

The following subsections describe three different soft-
ware integration approaches for CS&E software (outlined
in Figures 1–3).

5.1. APP + TPL Release with Punctuated
TPL Upgrades

The most common way that TPLs are integrated with
APPs in the CS&E environment is to develop the APP
against a static release of the TPL and then to perform punc-
tuated transitions to new TPL releases, which is depicted
in Figure 1. In this figure, the two flat horizontal lines la-
beled “TPL Head (Dev)” and “APP Head (Dev)” represent
the main development (Dev) lines for a TPL and the APP,
respectively. The curved lines coming off of the main de-
velopment line are release branches and complete release
cycles for APP and TPL are shown.

In this approach, little to no testing is done between the
development versions of the APP and the TPL. After a TPL
release is put out, the APP developers attempt to transition
to the new release. If releases of the TPL are put out with
sufficient frequency, then the cost of performing the tran-
sition and the risk of experiencing a regression can be rel-
atively low. However, it is very common in CS&E envi-
ronments for very long periods of time and large batches of
changes to be included between major releases of a TPL.
In some cases, as much as a year and thousands of changes
can occur between major releases. This can result in very
difficult transition periods when trying to upgrade for many
of the reasons discussed in Section 4. In some instances, ei-
ther the APP must accept one or more regressions in some
existing capabilities (in order to get access to new capabili-
ties in the new TPL release) or the upgrade to the new TPL
release must be abandoned altogether.

Even with all of these problems, using the APP + TPL
Release with Punctuated TPL Upgrades approach is per-
fectly adequate in many situations. The need for more fre-
quent integration testing in many other situations, however,
brings us to the next integration approach.

5.2. APP + TPL Release and Dev Daily
Integration

The high costs and risks associated with the APP + TPL
Release with Punctuated TPL Upgrades approach described
in Section 5.1 can be largely mitigated by putting a process
in place to keep APP Dev up to date with TPL Dev on a reg-
ular basis. Figure 2 shows the timeline of this APP + TPL
Release and Dev Daily Integration process [2]. APP devel-
opers still develop against a static TPL release but nightly
testing and reporting are used to also keep APP Dev + TPL
Dev integrated. Testing is extended to the new TPL release
branch when it is created, and then the switch is made to the
new TPL release after the release is finalized.

The primary advantages of this approach are a) all
changes to the TPL are tested with the APP’s current test
suite every 24 hours, b) transitions to new TPL releases
involve little effort, and c) there is less risk of experienc-
ing regressions after each TPL upgrade. However, there
are still some significant shortcomings with this approach
which are a) extra computing resources are needed to test
the APP against two or three different versions of the TPL
at the same time, and b) testing of APP Dev + TPL Dev is
often scaled back due to lack of resources (which in turn
increases the changes of the APP experiencing a significant
regression after the next TPL release).

Even with the shortcomings in the APP + TPL Release
and Dev Daily Integration process described above, the im-
provements over the APP + TPL Release with Punctuated
TPL Upgrades process are significant (see Section 6). If
reducing the costs and risks in upgrading to new TPL re-
leases were the only issue, then the daily integration pro-
cess described above is fairly adequate. However, the pri-
mary shortcoming of this process is that it limits the level
of detailed software collaboration that can be achieved be-
tween the APP and the TPL. It does not adequately support
the ambitious collaborations between APP and TPL devel-
opers needed to produce the most effective CS&E research
and software. To address these issues, an even closer level
of integration and development process is needed which is
described in the next section.

5.3. APP + TPL Almost Continuous Inte-
gration

The APP + TPL Release and Dev Daily Integration pro-
cess addresses a number of important CS&E software inte-



Figure 1. Timeline for the APP + TPL Release with Punctuated TPL Upgrades process

Figure 2. ¡ Timeline for the APP + TPL Release and Dev Daily Integration process

Figure 3. Timeline for the APP + TPL Almost Continuous Integration process



gration problems. As long as the TPL only provides a useful
but not pivotal role in the APP, this process is quite ade-
quate. What is not well supported, however, are a number
of important more collaborative use cases where the TPL
plays a more significant role in the APP. For example, if
the TPL is used to define an important architectural aspect
of the APP, then changes to the TPL will not be able to
impact main-line APP developers until after the next ma-
jor TPL release. Also, there are examples where it is de-
sirable to be able to carefully refactor the APP and move
some parts of it into the TPL so that it can be reused in
other APPs. These and other more challenging collabora-
tions need a closer form of software integration. However,
the scope of the software involved and the separation of the
APP and TPL development teams may be such that doing
full CI is still impractical.

If full CI between APP Dev and TPL Dev is impracti-
cal, how close can we get to full CI while still maintain-
ing a clear and important separation and also allowing us to
address even the most challenging collaborative use cases?
Before we look into answering this question, let’s first con-
sider some important requirements. We want to allow the
majority of the APP and TPL developers to continue to
work independently from each other. We need to preserve
the important property of SCI where the APP developers
can have high confidence that the code they check out from
their version control (VC) repositories will build and pass
the pre-check-in test suite. In addition, we need to allow a
smaller subset of more expert APP and TPL developers to
be able to co-develop APP Dev and TPL Dev together and
make arbitrary changes.

Here, a less than full CI approach called Almost Con-
tinuous Integration is proposed to address the requirements
stated above. Almost Continuous Integration is a strength-
ening of the Customer/Supplier relationship between the
APP and the TPL where the full acceptance test suite for
the TPL becomes the APP’s actual test suite. APP Dev
is developed against a very recent version of TPL Dev re-
ferred to as TPL Dev-. The APP development team keeps
its own VC repository storing TPL Dev- which is a snap-
shot of TPL Dev from a few minutes to a few days old.
Regular APP developers checkout and build against TPL
Dev-. The code in the APP’s TPL Dev- and APP Dev VC
repositories is always guaranteed to build and pass the SCI
pre-check-in test suite and TPL Dev- is always updated in
a way that preserves this. First, a nightly testing process
automatically checks out TPL Dev from the main TPL VC
repository along with APP Dev from its own VC repository
and then trys to build and run the pre-check-in test suite. If
this passes, the updates are commited to the TPL Dev- VC
repository. After this, the APP’s more rigorous test suites
are run using APP Dev + TPL Dev-. However, if APP Dev +
TPL Dev failes for any reason, the commit to the TPL Dev-

VC repository is skipped and notifications are sent out.
The other important situation where TPL Dev- gets up-

dated is when APP and TPL co-development take place (de-
picted in Figure 4). Here, sources are checked out from
both the APP’s and the TPL’s VC repositories. The two
TPL versions from the TPL Dev- and the main TPL Dev
VC repositories are merged into a single TPL working di-
rectory. The co-developer is then free to make whatever
changes are necessary to the APP and TPL sources and test
suites. Changes and enhancements across the entire TPL
and APP can be made, and software can freely and incre-
mentally be moved between the APP and TPL code bases.
Since TPL Dev and APP Dev are both being changed, both
pre-check-in test suites must be run and pass before check-
ing in. The changes in the TPL are checked into both the
APP-owned TPL Dev- and main TPL Dev VC repositories.
The additions and improvements in APP Dev + TPL Dev-
are then immediately available to other APP developers.

The only logical way to handle releases of the APP and
the TPL is to put out APP-specific TPL releases to coincide
with the APP releases (depicted in Figure 3). Putting out
multiple frequent TPL releases is perfectly consistent with
Agile best practices [7, 9, 18].

The numerous advantages to the Almost Continuous In-
tegration process proposed here are that a) all changes to
TPL Dev are typically tested against the APP’s test suites
every 24 hours, b) there is a lower probability of experi-
encing a regression after a TPL release than with any of
the other approaches, c) code can freely move between the
APP and TPL code bases in an incremental way, and d) the
creation of new capabilities in the TPL and APP can be de-
ployed to the rest of the APP development team quickly and
safely.

However, there are also some disadvantages to the
Almost Continuous Integration process. First, the co-
development of APP Dev and TPL Dev is complicated by
having to maintain two separate VC repositories for TPL
Dev and TPL Dev- and getting a single TPL working di-
rectory to be able to point to both. Another disadvantage
of this process is that regular APP developers will have to
recompile the TPL code more frequently then they might
want. If this is a serious problem, then the Almost Contin-
uous Integration automated nightly updating process can be
scaled back from updating the APP-owned TPL Dev- VC
repository from every night to instead every few nights or
less frequently depending on current circumstances. Even
if APP-owned TPL Dev- VC repository was only updated
once a week or even once a month, this is still significantly
better than the APP + TPL Release and Dev Daily Integra-
tion process described in Section 5.2. However, testing of
APP Dev + TPL Dev would be performed every night in
order to catch problems as soon as possible.

While this APP + TPL Almost Continuous Integration



Figure 4. APP + TPL Almost Continuous Integration Co-Development process

process has yet to be implemented in our CS&E environ-
ment at SNL, we have more than two years worth of expe-
rience with APP + TPL Release and Dev Daily Integration
that indicates it will work very well.

6. CS&E software integration experience at
Sandia National Labs

While the majority of this paper has been written in
general terms, the ideas and proposed processes discussed
are founded on significant practical experience with CS&E
software integration at Sandia National Labs (SNL) and
other related institutions.

The majority of these experiences are related to the Trili-
nos TPL code [14]. Trilinos is an ever expanding collection
of separate packages that implement a variety of advanced
research-driven CS&E algorithms. Trilinos has grown from
just three packages and a single developer in 1998 to over
45 packages and more than 30 part-time developers at the
end of 2008. Trilinos has a number of important customer
APPs inside and outside of SNL. Ten or more distinct APP
projects within SNL use some of the Trilinos packages.
Here, integration experiences with three different internal
SNL APP codes that use Trilinos are discussed; Alegra,
Charon, and SIERRA. The Alegra APP code implements
a number of important PDE discretization methods includ-
ing high-energy shock hydrodynamics [19]. The Charon
APP code implements semiconductor, reacting flow, and

magneto-hydrodynamics (HMD) PDE discretization meth-
ods [3]. The SIERRA APP code represents a collection of
PDE discretization codes and is larger and more complex
than the other SNL APP codes [5]. The reason the Alegra,
Charon, and SIERRA APP codes are specifically discussed
is that they each have a long history with Trilinos integra-
tion, each have experimented with APP + TPL Release and
Dev Daily Integration to some extent, and each are good
candidates for APP + TPL Almost Continuous Integration.

Charon has the longest history with APP + TPL Release
and Dev Daily Integration with Trilinos which started at the
beginning of the ASC 2007 Vertical Integration Milestone
Project [3]. Charon never went through the full release cy-
cle shown in Figure 2 but is noteworthy because a) it was
the pioneer APP where this integration method was first de-
veloped giving more than than two years of experience with
the method, and b) it is also likely to be the first APP code
that adopts the APP + TPL Almost Continuous Integration
process [4].

The Alegra APP code is noteworthy because it adopted
the APP + TPL Release and Dev Daily Integration process
with Trilinos several months before the 9.0 release of Trili-
nos. The Alegra development team reported that the main-
tenance of Alegra Dev + Trilinos Dev was fairly easy and
the upgrade to Trilinos 9.0 was stress-free and uneventful.
They also estimated that the overall cost of maintaining Ale-
gra Dev + Trilinos Dev and performing the later upgrade to
Trilinos 9.0 was less than for any of the punctuated upgrades
for new Trilinos releases done in the past.



The SIERRA APP code is significant to this discussion
for several reasons. First, SIERRA is the largest (in lines of
code and developer effort) and most complex (in every way)
than all other Trilinos customer codes. SIERRA also started
the APP + TPL Release and Dev Daily Integration process
with Trilinos Dev between the Trilinos 8.0 and 9.0 releases.
The punctuated upgrade of SIERRA for Trilinos 8.0 was
the most painful of any prior upgrade and resulted in un-
due stress for both SIERRA and Trilinos developers. One
of the SIERRA APP codes would not even build for sev-
eral days, and their most important solver was broken for
even longer. In contrast, the SIERRA upgrade to Trilinos
9.0 went smoother than any prior Trilinos upgrade which
has helped pave the way for closer collaborations between
the SIERRA and Trilinos development communities. Some
of the specific goals for SIERRA and Trilinos collaboration
require a closer level of software integration than is cur-
rently workable with the APP + TPL Release and Dev Daily
Integration process. Therefore, SIERRA is another strong
candidate for APP + TPL Almost Continuous Integration.

7. Conclusions

In order to make significant progress in solving chal-
lenging problems in Computational Science & Engineer-
ing (CS&E), we need to integrate a large amount of soft-
ware written by different groups of experts. The scope and
complexity of this software is more than can be addressed
under any single blanket of continuous integration (CI).
The CS&E environment presents a number of unique soft-
ware integration challenges and the current generation of
Agile software integration approaches needs to be adapted
for CS&E. The Customer/Supplier relationship [10, Chap-
ter 14] which forms the basis for decoupling Agile software
into different CI software collections is significantly less ef-
fective in CS&E environments.

This paper describes two different improved adaptations
of Agile integration approaches tailored to CS&E. The APP
+ TPL Release and Dev Daily Integration process has been
shown to be very successful in reducing the costs and risks
associated with upgrading TPL releases. However, it does
not adequately address more challenging collaborative use
cases. The APP + TPL Almost Continuous Integration pro-
cess is proposed as a way to address even the closest APP
and TPL collaborations while still maintaining the essential
partitioning between the APP and TPL developers and code
bases.

Modern Lean/Agile software engineering methodologies
must be adopted by the CS&E community if significant
progress is to continue. However, these methods must be
carefully adapted in order to address the special challenges
in CS&E. The issues of software quality, design, testing,
and integration are among the most important and signifi-

cant changes in the CS&E development community will be
needed to effectively address them.

References

[1] D. Arnold, P. Bochev, R. Lehoucq, and R. Nicolaides.Com-
patible Spatial Discretizations. Mathematics and its Appli-
cations. IMA, 2005.

[2] R. Bartlett. Daily integration and testing of the develop-
ment versions of applications and Trilinos. Technical Report
SAND2007-7040, Sandia National Laboratories, 2007.

[3] R. Bartlett and et. al. ASC vertical integration milestone.
Technical Report SAND2007-5839, Sandia National Labo-
ratories, 2007.

[4] R. Bartlett and et. al. Maintenence process for appliction and
third party library integration methods. Technical ReportIn
prepairation, Sandia National Laboratories, 2007.

[5] K. Bathe, editor.Computational Fluid and Solid Mechanics.
Elsevier, 2001.

[6] K. Beck. Test Driven Development. Addison Wesley, 2003.
[7] K. Beck. Extreme Programming (Second Edition). Addison

Wesley, 2005.
[8] S. Benzley and et. al. Conformal refinement and coarsening

of unstructured hexahedral meshes. December 2005.
[9] P. Duvall and et. al.Continuous Integration. Addison Wes-

ley, 2007.
[10] E. Evans.Domain-Driven Design. Addison Wesley, 2004.
[11] M. Feathers.Working Effectively with Legacy Code. Pren-

tice Hall, 2005.
[12] D. Goldberg. What every computer scientist should know

about floating-point arithmetic.ACM Computing Surveys,
March 1991.

[13] M. Heroux. Design issues for numerical libraries on scalable
multicore architectures.J. Phys., 2008.

[14] M. Heroux and et. al. An overview of the Trilinos project.
ACM TOMS, 2005.

[15] R. Martin. Agile Software Development (Principles, Pat-
terns, and Practices). Prentice Hall, 2003.

[16] J. Nocedal and S. Wright. Numerical Optimization.
Springer, 1999.

[17] D. Poole. Multi-stage continuous integration.Dr. Dobb’s
Journal, December 2008.

[18] M. Poppendieck and T. Poppendieck.Implementing Lean
Software Development. Addison Wesley, 2007.

[19] A. Robinson and C. Garasi.Computer Physics Communica-
tions, 164:408–413, 2004.

[20] K. Schwaber and M. Beedle.Agile Software Development
with Scrum. Prentice Hall, 2002.

[21] J. Stewart and H. Edwards. A framework approach for de-
veloping parallel adaptive multiphysics applications.Finite
Elem. Anal. Des., 40(12):1599–1617, 2004.

[22] H. Troger and A. Steindl.Nonlinear stability and bifurcation
theory: an introduction for engineers and applied scientists.
Springer, 1991.


	. Introduction
	. Overview of the CS&E software engineering environment
	. Overview of general software integration approaches
	. Special software integration challenges in CS&E software
	. Software integration approaches for CS&E software
	. APP + TPL Release with Punctuated TPL Upgrades
	. APP + TPL Release and Dev Daily Integration
	. APP + TPL Almost Continuous Integration

	. CS&E software integration experience at Sandia National Labs
	. Conclusions

