Agile Lifecycles for Research-driven CSE Software

Roscoe A. Bartlett, Oak Ridge National Laboratory
Michael A. Heroux & James M. Willenbring, Sandia National Laboratories

10/08/2013

Introduction

Development of production-quality software from a
research-driven computational science and
engineering (CSE) project is challenging. CSE
software products tend to be long-lived and
multi-component. Ideally they should have reusable
components and rely on external components
developed by other expert groups in order to ensure
state-of-the art capabilities. However, this ideal is
seldom achieved. Commercial software can become
unavailable and software from other research
organizations can be unreliable and poorly
supported. Many issues must be considered by a
research-driven software project: research
productivity and credibility, reuse and upgrades,
maintenance, support, shared development,
continued research with mature software, balancing
backward compatibility and change and more.
While a great deal of work has been done in the
general area of software lifecycle models, Lean/Agile
lifecycle models seem particularly attractive for
most CSE projects [7, 6, 3]. There seems to be little
work attempting to define software lifecycle models
for research-driven CSE software.

The primary purpose of this short paper is to argue
for research into the broad adoption of a modern
Lean/Agile-consistent software lifecycle model and
framework that take into account the particular
needs of the CSE community for both research and
production projects. It is based on the proposed
TriBITS Lifecycle Model [2]. One previous attempt
to create a viable lifecycle model for CSE can be
seen in the Trilinos Lifecycle Model [8] which
provided for transitions of CSE software from
research, to production, to maintenance (and later
death). Ideas from that earlier work were carried
into the development of the proposed TriBITS
Lifecycle Model.

An Agile Lifecycle Model

The primary goal of the proposed lifecycle model is
the development of Self-Sustaining Software which

is defined to have the following attributes:

e Open-source: The software has a sufficiently
loose open-source license allowing the source
code to be arbitrarily modified and used and
reused in a variety of contexts.

e Core domain distillation document: The
software is accompanied with a short focused
high-level document describing the purpose of
the software and its core domain model [4].

¢ Exceptionally well tested: The current
functionality of the software and its behavior is
rigorously defined and protected with strong
automated unit and verification tests.

e Clean structure and code: The internal
code structure and interfaces are clean and
consistent.

e Minimal, controlled internal and external
dependencies: The software has well
structured internal dependencies, and minimal
external upstream software dependencies that
are carefully managed.

e Properties apply recursively to upstream
software: All of the external upstream
software dependencies are also themselves
self-sustaining software.

e All properties are preserved under
maintenance: All maintenance of the software
preserves above properties (by applying
Agile/Emergent Design, Continuous
Refactoring, and other good Lean/Agile
software development practices).

Software with the above properties poses minimal
risks to downstream customer CSE projects. To the
extent that a piece of software is not consistent with
any of the above properties is poses a risk to
downstream customer projects. The motivation for
these properties and other issues are discussed in
detail in [2].

While the goal of the proposed Lean/Agile lifecycle
model is to produce self-sustaining software, other
properties of the software are also important and
the process by which software is first created in a



research project and is later matured has to be
considered. Therefore, the proposed TriBITS
Lifecycle Model defines several different maturity
levels for CSE software:

1. Exploratory (EP): Primary purpose is to
explore alternative approaches and prototypes.

2. Research Stable (RS): Developed from the
very beginning in a Lean/Agile consistent
manner. Strong unit and verification tests (i.e.
proof of correctness) are written as the
code/algorithms are being developed (near
100% line coverage). Has a very clean design
and code base maintained through Agile
practices of emergent design and constant
refactoring [1]. Generally does not have
higher-quality documentation, user input
checking and feedback, space/time
performance, portability, or acceptance testing.
Would tend to provide for some regulated
backward compatibility but might not. Is
appropriate to be used only by “expert” users.
Provides a strong foundation for creating
production-quality software and should be the
first phase for software that will likely become a
product.

3. Production Growth (PG): Includes all the
good qualities of Research Stable code.
Provides increasingly improved checking of user
input errors and better error reporting. Has
increasingly better formal documentation as
well as better examples and tutorial materials.
Maintains clean structure through constant
refactoring of the code and user interfaces to
make more consistent and easier to maintain.
Maintains increasingly better regulated
backward compatibility with fewer
incompatible changes with new releases. Has
increasingly better portability and space/time
performance characteristics. Has expanding
usage in more customer codes.

4. Production Maintenance (PM): Includes
the good qualities of Production Growth code.
Primary development includes mostly bug fixes
and performance tweaks. Maintains rigorous
backward compatibility with typically no
deprecated features or breaks in backward
compatibility. Could be maintained by parts of
the user community if necessary (i.e. as
“self-sustaining software”).

The transition between the RS, PG, and PM phases
is meant to be smooth and without risk. Existing
software is grandfathering in using the Legacy
Software Change Algorithm [2, 5]. There are many
other details and considerations related to the

definition and proposed implementation of this
lifecycle model that cannot be discussed here for
lack of space (see [2]).

Summary and Research Opportunities

We propose the adoption of a Lean/Agile lifecycle
model for research-driven CSE software. The
proposed model, if widely adopted, could
dramatically improve the productivity and impact
of CSE research and applications by providing a
wide range of compatible high-quality advanced
software capabilities from a wide range of areas.
The primary research questions for the proposed
Agile lifecycle model relate to how well it will work
in practice, what level of training will be needed to
get is used effectively, and finding ways to measure
the impact using various local and global measures.
There is an ongoing attempt to implement this
lifecycle model in the Trilinos project’. A broader
effort would include applying and adapting this
model to other projects as well.

References

[1] S.L. Bain. Emergent design: the evolutionary
nature of professional software development. Net
Objectives, 2008.

[2] R. A. Bartlett, Michael A. Heroux, and
James M. Willenbring. Overview of the tribits
lifecycle model: A lean/agile software lifecycle
model for research-based computational science
and engineering software. e-science, 2012 IEEE
8th International Conference on E-Science:1-8,
2012.

[3] K. Beck. Extreme Programming (Second
Edition). Addison Wesley, 2005.

[4] E. Evans. Domain-Driven Design. Addison
Wesley, 2004.

[5] M. Feathers. Working Effectively with Legacy
Code. Addison Wesley, 2005.

[6] R. Martin. Agile Software Development
(Principles, Patterns, and Practices). Prentice
Hall, 2003.

[7] M. Poppendieck and T. Poppendieck.
Implementing Lean Software Development.
Addison Wesley, 2007.

[8] James M. Willenbring, Michael A. Heroux, and
Robert T. Heaphy. The Trilinos software
lifecycle model. In ICSEW ’07: Proceedings of
the 29th International Conference on Software
Engineering Workshops, page 186, Washington,
DC, USA, 2007. IEEE Computer Society.

Thttp://trac.trilinos.org/wiki/TribitsDevelopmentPractices



