
Photos placed in horizontal position

with even amount of white space

between photos and header

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly

owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

ATDM Trilinos Testing and Integration
Roscoe A. Bartlett, Joseph R. Frye

Sandia National Laboratories
Trilinos Developers Meeting

October 25, 2018
SAND2018-12416 PE

Overview of ATDM

Trilinos Testing and

APP Integration

2

Trilinos Development and APP-Integration Parts

• Trilinos / APP Git Workflows:

• How git repositories and branches are set up, how merges occur, what git commands

are run, etc.

• Different git workflows are used for Trilinos developers, APP developers, and

APP/Trilinos co-developers

• Gating test suites can/should be run before each “merge” in the workflow

• Testing gates for workflows:

• Gating tests can be run manually or automated, daily or “every-so-often”, etc.

• Important test suites:

• 1) Auto PR Trilinos builds and tests : Owned by the Trilinos Framework team

• 2) ATDM Trilinos nightly builds and tests: Jointly owned by ATDM DevOps and APP teams

• 3) APP nightly builds and tests: Owned by APP teams

• Triaging and fixing failed builds and tests:

• Notification of new failures

• Triage failures

• Address failures

• Manage & Follow-up

3

https://github.com/trilinos/Trilinos/wiki/Pull-Request-Workflow
https://snl-wiki.sandia.gov/display/CoodinatedDevOpsATDM/ATDM+Builds+of+Trilinos

Trilinos Development and APP-Integration Workflows

APP/Trilinos

Integrator

APP

Developers

Trilinos

Dev 2
Trilinos

Dev 3

app-trilinos-repo/

master

trilinos-github/

develop

<github-user>/

1235-topic-b

Initial creation of

APP fork of Trilinos

Must pass gating:

2) ATDM Trilinos nightly

builds and tests

Must pass gating:

3) APP nightly builds

and tests

<github-user>/

1234-topic-a

Must pass gating:

1) Auto PR

Trilinos builds

and tests

Trilinos

Dev 1

commits on

branch

<main-branch>
(explicit) merge

commit

Unspecified git

graph/history

link to ancestor

commit

link to merge ancestor

branch

references

Person creating

commit

<topic-branch>

Legend for Git

Workflow Diagrams

Time

direct commit on

<main-branch>

Adventurous Trilinos

Users

This is the goal, but the

APPs are updating

without checking that the

native Trilinos test suite

actually passes on the

ATDM platforms!

4

Trilinos Development and APP-Integration Parts
• Trilinos / APP Git Workflows:

• Trilinos Pull Request (PR) testing & merging to ‘develop’ [Done]

• SPARC / Trilinos subteam workflow (manual testing by Micah H.) [Done]

• EMPIRE / Trilinos git.git workflow (EMPIRE-owned Jenkins pipeline for testing) [Done]

• Testing gates for workflows:

• 1) Auto PR Trilinos builds and tests :

• Current: MPI GCC 4.8.4, GCC 4.9.3, Intel 17

• Future: CUDA (see Trilinos GitHub #2646)

• 2) ATDM Trilinos nightly builds and tests:

• ATDM Trilinos builds for EMPIRE … EMPIRE switchover in-progress/complete?

• ATDM Trilinos builds for SPARC … ‘cee-rhel6’ gnu, intel, and clang complete

• 3) APP nightly builds and tests

• EMPIRE-PIC and EMPIRE-Fluid build and test suite: A few builds posting to Jenkins only

• SPARC build and test suite: Submits to Sierra CDash site

• Triaging and fixing failed builds and tests:

• Notification of new failures: Python email tool pulling data for ATDM Trilinos builds off CDash site.

• Triage failures: Filter out non-code failures then create Trilinos GitHub Issues

• Joe Frye creates initial GitHub Issues, Product Areas Leads follow up from there

• Address failures :

• New builds: a) fix, b) allow to fail, c) temporally disabling non-critical tests

• Existing builds: a) fix, b) allow to fail, c) temporally disable, or d) reverting PR from ‘develop’

• Manage & Follow-up: Someone must observe and ensure failures are addressed (???Who???)

5

https://github.com/trilinos/Trilinos/wiki/Pull-Request-Workflow
https://github.com/trilinos/Trilinos/issues/2646
https://snl-wiki.sandia.gov/display/CoodinatedDevOpsATDM/ATDM+Builds+of+Trilinos
https://testing-vm.sandia.gov/cdash/index.php?project=Trilinos&filtercount=1&showfilters=1&field1=buildname&compare1=63&value1=-atdm-
https://github.com/trilinos/Trilinos/labels/ATDM
https://snl-wiki.sandia.gov/display/CoodinatedDevOpsATDM/ATDM+Builds+of+Trilinos#ATDMBuildsofTrilinos-Addressingfailures

2) ATDM Trilinos Nightly Builds and Tests (CDash)

• All cleaned-up builds

promoted to “ATDM”

CDash group and

maintained (30 as of

10/22/2018).

• Every Trilinos

developer can see

details on build and

test failures.

• Easy to query about

behavior of tests over

multiple days,

multiple builds, etc.

• Easy for Trilinos

developers to

reproduce failing

builds and tests on

any ATDM platform.

• Pull down results

using CDash API for

automated workflows.

• Python tool pulling

data off CDash and

daily summary email.

6

Where to Catch Trilinos Defects on ATDM Systems?

• Trilinos package native test suite running in ATDM platform

• Best place to catch a Trilinos defect!

• Trilinos developers can triage and fix a defect before APP/Trilinos Integrators need to dig

in to triage APP failures caused by these defects.

• APP (EMPIRE, SPARC) native test site running on ATDM platform

• Less than best place to catch a Trilinos defect.

• Requires APP/Trilinos Integrator and APP Developers to triage problems and

communicate back to Trilinos developers.

• APP developer or user when running APP code

• The worst place to catch a Trilinos defect!

• APP Customer has to report problems back to APP Developers who have to triage the

failure and then report back to Trilinos developers.

Example:

• SEACAS update https://github.com/trilinos/Trilinos/issues/2650

• Broke Trilinos/SEACAS CUDA test suite.

• Did NOT break the EMPIRE test suite.

• Broke usage of EMPIRE!

7

If update of Trilinos

was gated by 100%

passing SEACAS

tests, then EMPIRE

developers may have

never seen these

defects!

https://github.com/trilinos/Trilinos/issues/2650

Injecting Failures

vs.

Fixing Failures

8

Injecting New Failures and Fixing Failures: A Race!
• Mean-time to fail: Average time (in days) for when a new failure shows up in ‘develop’

branch in one or more promoted ATDM Trilinos builds.

• Mean-time to fix: Average time (in days) to discover, triage and fix a failure on the Trilinos

‘develop’ branch in the promoted ATDM Trilinos builds.

• The core problem: If “mean-time to fail” is less than “mean-time to fix”, then the ATDM

Trilinos builds on ‘develop’ on average will ALWAYS be broken (and therefore block updates

of Trilinos to the APP customers)!

Mean-time to fix

<

Mean-time to fail

#
 F

a
ilu

re
s

Time (days)

Mean-time to fix

>

Mean-time to fail

100% clean allowing Trilinos APP updates

#
 F

a
ilu

re
s

Almost never clean unless freeze and bug fix sprint!

Promoted “ATDM”

Trilinos builds have been

continuously broken for

3+ months since

7/15/2018! Freezing the ‘develop’ branch to fix failures is never going to happen!

9

Options for ATDM Trilinos APP Updates

• Option-1: Make ATDM Trilinos builds clean on ‘develop’ periodically

• Option-2: Create ‘atdm-release’ branches and clean up there

10

Option-1: Get clean ATDM Trilinos Builds on ‘develop’
app-trilinos-repo/

master

trilinos-github/

develop

Badly Breaks:

2) ATDM Trilinos

Nightly Builds

and Tests

#
 F

a
ilu

re
s

Time (days)

11

Passes gating:

2) ATDM Trilinos nightly

builds and tests

3) APP nightly builds

and tests

Passes gating:

2) ATDM Trilinos nightly

builds and tests

3) APP nightly builds

and tests

Option-2: Trilinos ‘atdm-release’ branches: Workflow
app-trilinos-repo/

master

trilinos-github/

developAdds new ATDM

Trilinos and APP

failures on ‘develop’?

Must create bug-fix

branch off of ‘atdm-

release’ NOT ‘develop’

Fixes failures on

‘atdm-release’ and

‘develop’

Must create 2

PRs per bug-

fix branch!

Fixes ATDM Trilinos

and APP test suites!atdm-release

Create a new

‘atdm-

release’

branch

atdm-release

Create a

new

‘atdm-

release’

branch

‘develop’ has many

ATDM Trilinos and

APP failures!

Adds new ATDM

Trilinos and APP

failures on ‘develop’?

Bug-fix topic

branch

Must run ATDM Trilinos builds

on ’atdm-release’ branch also!

Merge ‘atd-relase’ to ‘app-

trilinos-repo/master’

NOTE: Note this is really just an adaptation of the gitworkflows(7) release ‘maint’ branch!

12

https://git-scm.com/docs/gitworkflows

Option-2: Trilinos ‘atdm-release’ branches: Failures
#
 F

a
ilu

re
s

‘a
td

m
-r

e
rl
e
a
s
e
’
b
ra

n
c
h

#
 F

a
ilu

re
s

Time (days)

‘d
e
v
e
lo

p
’
b
ra

n
c
h

Merge ‘atdm-release’ to

‘app-trilinos-repo/master’

Create new

‘atdm-release’

branch

Create new

‘atdm-release’

branch

Merge ‘atdm-release’ to

‘app-trilinos-repo/master’

13

Options for ATDM Trilinos APP Updates: Summary

• Option-1: Make ATDM Trilinos builds clean on ‘develop’ periodically
• Assumes: “Mean-time to fix” is less than the “mean-time to fail” on ‘develop’ branch.

• Pro: Requires just one set of builds on the ATDM platforms.

• Pro: Simpler workflow for Trilinos developers merge bug fixes to ‘develop’ branch.

• Pro: Provides quicker APP updates of Trilinos.

• Pro: Allows APPs like EMPIRE to co-develop Trilinos and update Trilinos ‘develop’ and

get updates to the APP fairly regularly.

• Con: Requires fast reaction time to detect and triage new failures and then either a)

fix, b) disable, or c) revert breaking PRs so that the “mean-time to fix” is less than

“mean-time to fail”.

• Option-2: Create ‘atdm-release’ branches and clean up there
• Assumes: “Mean-time to fix” is less than the “mean-time to failure” (not true right)

• Pro: More leisurely reaction time to fix defects since no race with “mean-time to fail”.

• Pro: Guaranteed periodic Trilinos updates with 100% clean ATDM Trilinos builds.

• Con: Requires double the number of builds; one on ‘develop’, one on ‘atdm-release’

• Con: More complex workflow for Trilinos developers to commit fixes to ‘atdm-

release’ and then merge back to “develop” in two Trilinos PRs per bug-fix branch!

• Con: More complex workflow for APP Trilinos co-developers involving branches,

cherry-picks (e.g. EMPIRE git-git-like workflow and SPARC cherry-picking workflow).

14

General Software

Engineering

Principles for

Defects

15

General SE Principles for Defects

• Lean/Agile SE Practices for dealing with defects:

• Strong automated testing (have tests help new detect defects)

• Continuous testing (reduce the time to detect new defects caught by tests)

• Continuous integration (reduce time to detect conflict defects)

• STOP THE LINE when a new defect gets into the main development branch

• Fixing defects in previously working software is higher priority than developing new

features!

• Cost of a defect goes up

(significantly) the longer it

takes to detect and correct a

defect.

16

Reducing Time to

Detect, Triage, and

Address Trilinos

Failures

17

Reduce Time to Detect, Triage, and Fix Defects

• Reduce time to detect and triage new Trilinos defects

• Run nightly ATDM Trilinos builds against ‘develop’ and run APP native tests

against Trilinos ‘develop’ [Much progress but more to do]

• Filter out non-code failures and create new ATDM Trilinos GitHub Issues with

dedicated person(s) to do top-level triage. [In Progress, Joe Frye]

• Python tool to keep track of new failures not already covered by Trilinos

GitHub issues [In Progress]

• Add categories according to severity (e.g. “critical”, “blocker”, “nonblocker”)

[ToDo]

• Reduce time to fix defects

• Make it easy for Trilinos developers to reproduce failures for ATDM Trilinos

builds [Done]

• Send regular reminders to Trilinos Product Area Leads and assigned Trilinos

developers about un-resolved ATDM Trilinos GitHub issues. [ToDo]

18

Detecting New Failures/Missing Results: CDash Email

19

Failures in red require action!
• Missing test results!

• Failing test without

issue tracker!

Reproducing ATDM Trilinos Builds: Trilinos Wiki

20

Reproducing ATDM Trilinos Builds: README.md

21

Reproducing ATDM Trilinos Builds: Systems Info

22

Reproducing ATDM Trilinos Builds: GitHub Issue

23

Addressing Trilinos

Failures

24

How to Address Trilinos Failures?

• Keeping already cleaned-up promoted builds clean

a) Fix the failures => Best option!

b) Mark failing tests as “expected may fail” and not trigger global failure in Python tool:

• Only for non-blocking issues

• Allows us to watch test run but not block updates of Trilinos to APPs

• Best for cases where someone is working (or soon is going to work) to fix non-

blocking failures.

c) (Temporarily) disable failing tests:

• Only for non-blocking issues

• Best for cases where no-one is going to work on fixing the failures anytime soon.

d) Revert the commit(s) (or PR merge) causing the failure:

• => Perhaps best option for critical or blocking failures that can’t be fixed soon!

• Initial failures from setting up new platforms

a) Fix the failures

b) (Temporarily) disable failing tests (non-blocking issues only)

c) Mark failing tests as “expected may fail” and not trigger global failure in Python tool

(non-blocking issues only)

• NOTE: Reverting commits is NOT an option for cleaning up failures that occur when

setting up new builds on new platforms or envs on existing platforms.

25

Following up on

ATDM Trilinos

GitHub Issues

26

Problems with Trilinos GitHub Issue Management

• Problems not working issues:

• Ignoring new ATDM Trilinos GitHub Issues (e.g. no replies for weeks)

• Not following up on Issues after some initial investigation

• Problems closing issues:

• Closing Issues before getting confirmation on CDash (sometimes issue is

not addressed)

• Not closing issues after issue has been addressed (clutter up list of active

issues)

Proposed Solution => Send out weekly email listing

• Send out emails to Trilinos Product Area Leads for open ATDM Issues in their area

• Send out emails to assignees of open ATDM Trilinos issues?

27

Trilinos GitHub Issue Reminder Emails

#Issue ATDM Priority Created Last Updated # Comments

Summary

Next Action Status

#3499 Blocker 2018-09-25 2018-10-03 5

Anasazi tests failing in ATDM build on mutrino

Likely broken by PR #3481 merged to ‘develop’ on 9/21/2018 …

#3686 Blocker 2018-10-16 2018-10-16 0

Teko_ModALPreconditioner_MPI_1 Failing in ATDM cee-rhel6-clang-opt-serial

build

???

…

(7) ATDM Trilinos Linear Solvers Product Area GitHub Issues on 2018-10-24

• Python tool that pulls data off GitHub (query labels ‘ATDM’, ‘TPA: Linear Solvers’, …)

• To Who? Send only to Trilinos Product Area Leads? Send email also to Issue assignees?

• Frequency? Once a week? Twice a week?

28

Wrapping Up

29

Observations and Open Questions

• SNL ATDM is test-bed for components approach for exascale HPC software!

• Two approaches being compared:

• Full buy-in to using and co-developing components: EMPIRE

• Avoid deep dependencies or co-development of components: SPARC

• The role of Trilinos in ATDM will either be viewed as:

• A) Successful:

• => Encouraging the usage of components approaches

• => Leading to more future funding for Trilinos?

• B) Unsuccessful:

• => Discouraging the usage of components approaches

• => Leading to less future funding for Trilinos?

• Questions:

• At the end of ATDM, which approach will be viewed more successful?

• What will that say about Trilinos?

• What will this say about the future of components in CSE/HPC exascale?

• If we can’t succeed with components with Trilinos in ATDM at SNL, how we

expect this to work in the larger ECP project across labs, universities, etc.?

Let’s stabilize Trilinos for ATDM APPs and remove that as an excuse!

30

Trilinos Development and APP-Integration Parts
• Trilinos / APP Git Workflows:

• Trilinos Pull Request (PR) testing & merging to ‘develop’ [Done]

• SPARC / Trilinos subteam workflow (manual testing by Micah H.) [Done]

• EMPIRE / Trilinos git.git workflow (EMPIRE-owned Jenkins pipeline for testing) [Done]

• Testing gates for workflows:

• 1) Auto PR Trilinos builds and tests :

• Current: MPI GCC 4.8.4, GCC 4.9.3, Intel 17

• Future: CUDA (see Trilinos GitHub #2646)

• 2) ATDM Trilinos nightly builds and tests:

• ATDM Trilinos builds for EMPIRE … EMPIRE switchover in-progress/complete?

• ATDM Trilinos builds for SPARC … ‘cee-rhel6’ gnu, intel, and clang complete

• 3) APP nightly builds and tests

• EMPIRE-PIC and EMPIRE-Fluid build and test suite: A few builds posting to Jenkins only

• SPARC build and test suite: Submits to Sierra CDash site

• Triaging and fixing failed builds and tests:

• Notification of new failures: Python email tool pulling data for ATDM Trilinos builds off CDash site.

• Triage failures: Filter out non-code failures then create Trilinos GitHub Issues

• Joe Frye creates initial GitHub Issues, Product Areas Leads follow up from there

• Address failures :

• New builds: a) fix, b) allow to fail, c) temporally disabling non-critical tests

• Existing builds: a) fix, b) allow to fail, c) temporally disable, or d) reverting PR from ‘develop’

• Manage & Follow-up: Someone must observe and ensure failures are addressed (???Who???)

31

https://github.com/trilinos/Trilinos/wiki/Pull-Request-Workflow
https://github.com/trilinos/Trilinos/issues/2646
https://snl-wiki.sandia.gov/display/CoodinatedDevOpsATDM/ATDM+Builds+of+Trilinos
https://testing-vm.sandia.gov/cdash/index.php?project=Trilinos&filtercount=1&showfilters=1&field1=buildname&compare1=63&value1=-atdm-
https://github.com/trilinos/Trilinos/labels/ATDM
https://snl-wiki.sandia.gov/display/CoodinatedDevOpsATDM/ATDM+Builds+of+Trilinos#ATDMBuildsofTrilinos-Addressingfailures

THE END

32

