'
; ' 2009-1114P

Almost Continuous Integration for the
Co-Development of Highly Integrated
Applications and Third Party Libraries

Roscoe A. Bartlett
http://www.cs.sandia.gov/~rabartl/
Department of Optimization & Uncertainty Estimation
Trilinos Software Engineering Technologies and Integration Lead

Sandia National Laboratories

Sandia Software Engineering Seminar Series
January 14, 2009

Sandia
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, National .
Page 1 for the United States Department of Energy under contract DE-AC04-94AL85000. Laboratories

|
Mplications (APPs) and Third-Party Libraries (TPL) at SNL

Applications (APPs) Third Partly Libraries (TPL)
Aleph Trilinos

Xyce Trilinos

Titan (VTK) Trilinos

Charon* Trilinos*, Xyce, Nevada
Alegra* Trilinos*, Xyce, Nevada
SIERRA* Trilinos*

* Some experimentation with more frequent APP + TPL Integration

desired goals

Page 2

Tighter level of APP + TPL integration is needed in many cases
Co-development of APP + TPL(s) is often needed to drive new efforts
Current software engineering infrastructure and practices are insufficient to support

m

We need new software engineering infrastructure to support these integration efforts

(WIVIpIVIIV]

National
Laboratories

g
Lean/Agile Software Engineering Principles

« High quality software is developed in small increments and with sufficient
testing in between sets of changes.

« High quality defect-free software is most effectively developed by not
putting defects into the software in the first place (i.e. TDD, code reviews,
pair programming, etc.).

« Software should be delivered to real (or as real as we can make them)
customers is short intervals.

* Ruthlessly remove duplication in all areas.

» Avoid points of synchronization. Allow people to work as independently as
possible and have the system set up to automatically support this.

* Most mistakes that people make are due to a faulty process/system (W.
Edwards Deming).

« Automation is needed to avoid mistakes and improve software quality.

Sandia
National
Laboratories

References: http://Iwww.cs.sandia.gov/~rabartl/readingList.html @

Page 3

' .
Lean/Agile Methods: Development Stability

Common Approach

NOT AGILE!
Code instability
or
#defects .
Regression!
Time
Release X Branch for Release X+1
Release X+1
Problems

« Cost of fixing defects increases the longer they exist in the code
« Difficult to sustain development productivity
» Broken code begets broken code (i.e. broken window phenomenon)

* Long time between branch and release
— Difficult to merge changes back into main development branch
— Temptation to add “features” to the release branch before a release

» High risk of creating a regression

Sandia
National
Laboratories

Page 4

==
Lean/Agile Methods: Development Stability

. The Agile way!

Code instability

or
#defects
Time
Release X Branch for Release X+1
Release X+1
Advantages

» Defects are kept out of the code in the first place
Code is kept in a near releasable state at all times
Shorten time needed to put out a release

Allow for more frequent releases

Reduce risk of creating regressions

Decrease overall development cost

Sandia
National
Laboratories

Page 5

}' APP Only Upgrades After Each Major Release of TPL

ToL X 1elee® .
Xy TPL X+1 release R
ﬂ?\’(\o‘(\ .
TPL Head o?

v

APP Y+1 & TPL X+1
release

APP Head /

Testing: APP Dev + TPL X APP Dev Testing:
transition APP Dev + TPL X+1
to TPL X+1

Transition from TPL X to TPL X+1 can be difficult and open ended
Large batches of changes between integrations

Greater risk of experiencing real regressions

Upgrades may need to be completely abandoned in extreme cases
However, this is satisfactory for many APP+TPL efforts!

Sandia
National
Laboratories

Page 6

— /
}'ﬂjild and Test APP Against both TPL Release and TPL Dev

Q ; :
i APP (SIERRA) |3| SE
i Dev zZ i APP Dev + TPL Dev
R —_— ! ! Developers
l — 1l
SN L TP TP o
APP (SIERRA) (Trilinos) > (Trilinos) |
Dev Developers Release Dev N -
TPL (Trilinos) Dev

Developers
» APP (SIERRA) Dev Developers only build/test against TPL Release
* TPL (Trilinos) Dev Developers work independent from APP

« Changes between TPL Release and TPL Dev handed through a) Refactoring, b)
minimal ifdefs (NO BRANCHES)! => Backward Compatibility!

» Use of staggered releases of TPL and APP
 APP + TPL Dev Developers drive new capabilities
« Difficult for APP to depend too much on TPL

* Does not support tighter levels of integration

Sandia
* However, this is satisfactory for many APP+TPL efforts! @ National

Page 7 Laboratories

= '
}. APP Dev Builds Against Both TPL Release and TPL Dev

TPL X re1eas

v

TPL X+1 release

v

TPL Head (Dev)

v

SIERRA + Trilinos Integration! APP Y+1 & TPL X1

Charon + Trilinos Integration! release
Alegra + Trilinos Integration! >
Xyce + Trilinos Integration!
APP Head (Dev) y J
Testing: APP Dev + TPL Dev Testing: Testing: APP Dev + TPL Dev
Testing: APP Dev + TPL X APP + Testing: APP Dev + TPL X+1
Tri Dev
Tri X
Tri X+1

» All changes are tested in small batches
» Low probability of experiencing a regression

« Extra computing resources to test against 2 (3) versions of TPL
« Some difficulty flagging regressions of APP + TPL Dev

» APP developers often break APP + TPL Dev

« Difficult for APP to rely on TPL too much

« Hard to verify TPL for APP before APP release

* However, this is satisfactory for many APP+TPL efforts! s
Page8 — T

} APP + TPL Integration: Different Collaboration Models

 APP Dev only upgraded after each major release of TPL

Little to no testing of APP + TPL Dev in between TPL releases

« APP Dev builds against both TPL Release and TPL Dev

APP developers work against TPL Release

APP + TPL team(s) build against TPL Dev

Daily integration testing done for both APP + TPL Release and Dev
Staggered releases of TPL and APP

« APP Dev developed only against TPL Dev (with “Almost” Continuous
Integration)

Page 9

Regular APP developers work independently using very recent APP-owned VC
copy of TPL Dev-

Regular TPL developers work independently
APP Dev + TPL Dev developers
* Check-out and modify APP Dev
» Check-out and modify TPL Dev
* Run both APP and TPL pre-checkin test suites
* Check into both APP-owned and main TPL VC repositories
Nightly testing of APP Dev + TPL Dev automatically updates APP-owned TPL

Dev- VC Repository
Releases best handled as combined releases of APP and TPL
@ Sandia
National
Laboratories

g
General Development & Testing Principles

» Regular TPL developers only build and run TPL pre-checkin test suite.

* Regular APP developers should only check out code that has already built
and passed the pre-checkin APP test suite.

 Nightly APP regression (and other) tests should only be run on code that
has already been shown to build and pass the pre-checkin APP test suite.

» Code that builds and passes the pre-checkin test suite is safe to check in.

Sandia
National
Laboratories

Page 10

% Basic Setup for APP + TPL Almost Continuous Integration

Q) .
Main APP < Q

)\ > VC Repository
Dev <
L (Dev))
APP Dev P N
Nightly Testing APP-owned TPL < a APP D
APP Dev + TPL Dev- > VC Repositor N o
p y Developers
APP Dev + TPL Dev (Dev-) >
_ 4
_ 4
. APP Pre-Checkin N
Test Suite <
APP Regression Q
Test Suite *
APP Owned
__ APP Dev + TPLDev .______
Developers
TPL Owned i
e)
> Main TPL <t
VC Repository ,
> Dev <
Q \ (Dev) J \)\
R TPL Pre-Checkin < TPL Dev
Test Suite < Developers
TPL Dev R TPL Regression Sandi
Nightly Testin Test Suit ation:
ightly Testing est Suite @ National
Laboratories

Page 11

7
}' Standard APP Development Process

1.a) Check out 2.a) Modify & extend
A
Main APP] 5.a) Check in (APP Local
VC Repository < Working Directory
(Dev) J L (Dev)
1.b) Check out
‘ . 3) Build
APP-owned TPL] 5.c) Check in? (TPL Local]
VC Repository < Working Directory
(Dev-) J L (Dev-)
1.c) Check out
! 4) Run test suite
. . ‘—"’
APP Pre-Checkin 5.b) Check in APP Pre-Checkm
Test Suite Test Suite
Working Directory

/ 2.b) Modify & extend

 TPL (Dev-) code is typically not modified by average APP developers!
 However, small changes can be made and can be good!

Sandia
National
Laboratories

Page 12

7
}' APP Dev + TPL Dev Development Process

- T 2.a) Modify & extend
(ity AR) 1.a) Check out APP Local
: _ Working Direct
VC Repository 5.a) Check in e ey
_ (DEV) /‘ . 4 \“:::, 3) BU'Id
Ve ~ 1.b) Check out 4 Na-””
APP-owned TPL UIPL (Lol < 2.b) Modify & extend
VC Repository 5.b) Check in Working Directory
(Dev-) < L (Dev- and Dev) <
. J
1.c) Check out
APP Pre-Checkin) , » APP Pre-Checkin [+ 2.¢) Modify & extend
Test Suite 5C) Check in Test Suite
Working Directory - - --- 4.a) Run test suite
N
Main TPL 1.d) Check out (and merge)
VC Repository J 5.d) Check in
(Dev) h
Y
.-~ 4.b) Run test suite
TPL Pre-Checkin 1.€) Check out > TPEI_Pfe-gheCkin o)
Test Suite est Suite
Y Working Directory
5.e) Check in 1 2.d) Modify & extend

* Pre-checkin test suites for APP and TPL are both run before checkin

« Simultaneous checks into APP-owned TPL Dev- and Main TPL Dev VC Repositories!
— Changes in APP-owned TPL VC Dev- Repos get back into Main TPL VC Dev Repos!

rayc 19

} Nightly APP + TPL Dev Testing and Checkins of TPL Dev-

s A
é A 1.a) Check out
Main APP) > W :T\(PP II_Dc_JcaIt
VC Repository o Ir(]gevl)rec ory . .
(Dev)) . J 2) Build
~ 1.b) Check out 4 o
APP-owned TPL > T(_PL Local
VC Repository 4) [passed] Check in Working Directory
(Dev-) < (Dev- and Dev) <
N\ J - J
APP Pre-Checkin 1.c) Check out > APP Pre-Checkin _
Test Suite Test Suite - 3) Run test suite
Working Directory
Main TPL] 1.d) Check out (and merge)
VC Repository
(Dev) J

* Only runs pre-checkin test suite and then only on the primary development
platform! (just like a regular APP developer)

 TPL Dev- VC Repository is automatically updated by nightly testing
process if a) merge, b) build, and c) pre-checkin test suite all pass!
— This is the same criteria we have for any regular APP developer checkin!

* Integration build is checked throughout the day with continuous integration

Page 14

(but without the auto-updates of TPL Dev- VC repository to avoid conflicts) @

Sandia
National
Laboratories

} APP + TPL Development and Testing Details and Policies

 Nightly Testing:
— Nightly APP Dev + TPL Dev testing and checking in only run on primary
development platform and only runs pre-checkin test suite
=> Minimizes extra testing computer resources!
— Nightly APP regression (and other stronger) tests are only run on APP Dev + TPL
Dev- and *not* with TPL Dev (but on the same day after upgrade of APP Dev-)

* Only one version of Dev code goes through extended testing (e.g. porting, regression,
performance, scalability).

» If APP Dev + TPL Dev testing and updating of TPL Dev- succeeds, then extended
testing will involve all changes to APP Dev and TPL Dev in the last 24 hours.

« Continuous Integration Testing:

— Build and test APP Dev + TPL Dev throughout the day to flag problems and to
help support co-development of APP Dev + TPL Dev

* Open Questions:
— How are multiple TPL handled in nightly testing ?
» Are all TPL updated at the same time in nightly testing process?
» Are TPL updated and testing separately in a chain (TPL 1 followed by TPL 2, etc.)?
— What about intra-TPL dependencies (i.e. Nevada and Xyce => Trilinos)?
* Do all TPL need to follow this process as well?
rl'l National

Page 15 Laboratories

} APP + TPL Almost Continuous Integration and Releases

TPL APP Y+1 release

v
Q
St
v

TPL Head (Dev) o&
The Future of APP + TPL Integration?

APP Y+1 & TPL APP Y+1 release

v

v

APP Head (Dev)

v

Nightly Testing: APP Dev + TPL Dev (pre-checkin tests only, TPL Dev- checkin)
Nightly Testing: APP Dev + TPL Dev- (complete test suites)
Supported with asynchronous continuous integration testing of APP Dev + TPL Dev

» All changes are tested in small batches

« Low probability of experiencing a regression between major releases

» Less computing resources for detailed nightly testing (only one TPL version)
 All tested regressions are flagged in less than 24 hours

» Allows code to flow freely between the APP and TPL

» Supports rapid development of new capabilities from top to bottom

 All code checked out by APP Dev developers has passed pre-checkin build/test
* More complex processes (i.e. requires some tools?)

* APP Dev developers spend more time spent recompiling TPL code

« Recommended for projects requiring high levels of integration & collaboration!

%/ lLADOTAtories
Page 16

|
}' Challenges with APP-Specific TPL Releases

[]

SIERRA Y+1
(released against
Trilinos SIERRA Y+1)

| \ 4 | v
Xyce J+1 VTK M+1
(released against (released against
Trilinos X) Trilinos X+1)
]
Trilinos
» SIERRA
Y+1? «

Multiple releases of TPL (Trilinos) presents a possible problem with complex APPs

Solution:
=> Provide perfect backward compatibility of Trilinos (TPL) X through Trilinos SIERRA Y+1

Sandia
National
Laboratories

Page 17

}.. Assorted Ideas for APP Dev + TPL Dev Nightly Testing

 Nightly and continuous updating, testing, and checkin algorithm
— Check out APP Dev and + TPL Dev- from APP-owned TPL Dev- VC
Repository(s)
— Build and run pre-checkin APP test suite (for APP Dev + TPL Dev-)
— Foreach TPL (i=0 ... N-1) [In order of increasing dependencies |
* Perform update of TPL i Dev from main TPL i VC Dev repository
* Build and run pre-checkin APP test suite

« If all passed, check into APP-owned TPL i Dev- VC repository [Nightly only]
» Otherwise, skip checkin into APP-owned TPL i Dev- VC repository

« Advantages

— Failures with one TPL do not automatically bring down integration with all TPL

» Example: If Trilinos Dev works with Charon but Xyce Dev does not, at least Trilinos Dev
would get updated and used by Charon Dev.

— Provides additional information on where regressions are coming from
» Example: A test passes with APP Dev + TPL Dev- but fails with APP Dev + TPL Dev

Sandia
National
Page 18 Laboratories

g
Maintenance of APP + TPL Integration

APP + TPL Monitor:

APP Dev + TpgrDe" Build/Test @ — Member of the APP development team
APP Dev + TPL Dev-/Release Build/Test _ — Has good familiarity with the TPLs
Hard APP — Performs first-round triage (APP or TPL?)
All failures - Issues — Forwards issues to APP or TPL Reps

Issues APP — Ultimate responsibility to make sure issues
Representatives are resolved

APP Representative:
— Member of the APP development team
— Second-round triage of APP issues
g — Forwards hard APP issues to APP
developers
TPL Representative:
— Member of the TPL development team
— Has some familiarity with the APPs
Hard TPL #1 Hard TPL #2 — Second-round triage for TPL issues
| lesves | feeves — Forwards hard TPL issues to TPL
developers
General principles:

— Roles of authority and accountability
(Ordained by management)

— At least two people serve in each role

— Rotate people in roles Sandia
@ National
Laboratories

APP + TPL
Monitors

TPL #1
Issues

TPL #2
Representatives

TPL #1
Representatives

TPL #2
Developers

TPL #1
Developers

Page 19

|l
Summary #1

 Nightly building and testing of the development versions of the application
and TPLs:
— results in better production capabilities and better research,
— brings TPL developers and APP developers closer together allowing for a better
exchange of ideas and concerns,
— refocuses TPL developers on customer efforts,
— helps drive continued research-quality TPL development, and
— reduces barriers for new TPL algorithms to have impact on production
applications.
« APP Dev developed only against TPL Dev (with “Almost” Continuous
Integration)
— Regular APP developers work independently using very recent APP-owned VC
copy of TPL Dev-
— Regular TPL developers work independently
— APP Dev + TPL Dev developers
* Check-out and modify APP Dev
» Check-out and modify TPL Dev

* Run both APP and TPL pre-checkin test suites
* Check into both APP-owned and main TPL VC repositories
— Nightly testing of APP Dev + TPL Dev automatically updates APP-owned TPL
Dev- VC Repository
— Releases best handled as combined releases of APP and TPL

rage zu

ies

|
}' Summary #2

* Integration Models:

— APP Dev only upgraded after each major release of TPL
« Little to no testing of APP + TPL Dev in between TPL releases

— APP Dev builds against both TPL Release and TPL Dev
 Daily Integration testing done for both APP + TPL Release and Dev
» Staggered releases of TPL and APP

— APP Dev developed only against TPL Dev (with “Almost” Continuous Integration)
* APP Dev + TPL Dev developers update both APP-owned and main TPL repositories

* Nightly testing of APP Dev + TPL Dev automatically updates APP-owned TPL Dev- VC
Repository

* Releases best handled as combined releases of APP and TPL
» TPL Dev- checkins can be dialed back approaching TPL Release and Dev Integration!

* Final thoughts

— Each of these different integration models will be appropriate for a particular
APP+TPL situation.

— The particular integration model can be switched during the life-cycles of the APP
and TPL depending on several factors:
» How critical is the TPL functionality currently to the APP?
» Are there alternatives to a particular TPL that can duplicate functionality?
» How actively is the TPL being developed?
* Is it critical for the APP to continue to accept new releases of the TPL?
* How active is the collaboration between APP and TPL developers?

» Is the TPL a fundamental part of the infrastructure of the APP?
.« .. fies

